ﻻ يوجد ملخص باللغة العربية
We report new branching fractions for 121 UV lines from the low-lying odd-parity levels of Fe II belonging to the z6Do, z6Fo, z6Po, z4Fo, z4Do and z4Po terms of the 3d6(5D)4p configuration. These lines range in wavelength from 2250 - 3280 {AA} and originate in levels ranging in energy from 38459 - 47626 cm-1. In addition, we report branching fractions for 10 weak blue lines connecting to the z4Do term which range in wavelength from 4173 - 4584 {AA}. The BFs are combined with radiative lifetimes from the literature to determine transition probabilities and log(gf) values. Comparison is made to selected experimental and theoretical data from the literature. Our new data are applied to iron abundance determinations in the Sun and in metal-poor star HD 84937. For the Sun, eight blue lines yield log {epsilon}(Fe) = 7.46 +/- 0.03, in agreement with standard solar abundance estimates. For HD 84937 the observable wavelength range extends to the vacuum UV ({lambda} >= 2327 {AA}), and from 75 lines we derive log {epsilon}(Fe) = 5.26 +/- 0.01 ({sigma} = 0.07), near to the metallicity estimates of past HD 84937 studies.
We report new branching fraction measurements for 199 UV and optical transitions of Hf II. These transitions range in wavelength (wavenumber) from 2068- 6584 A (48322-15183 cm-1) and originate in 17 odd-parity upper levels ranging in energy from 3857
We have derived new very accurate abundances of the Fe-group elements Sc through Zn (Z = 21-30) in the bright main-sequence turnoff star HD 84937, based on high-resolution spectra covering the visible and ultraviolet spectral regions. New or recent l
We checked consistency between the copper abundance derived in six metal-poor stars using UV Cu II lines (which are assumed to form in LTE) and UV Cu I lines (treated in NLTE). Our program stars cover the atmosphere parameters which are typical for i
Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS)
In order to provide a better basis for the study of mechanisms of nucleosynthesis of the light elements beyond hydrogen and helium in the oldest stars, the abundances of C, O, Mg, Si, P, S, K, and Ca have been derived from UV-HST and visible-ESO high