ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial ergodicity for SPDEs via Poincare-type inequalities

81   0   0.0 ( 0 )
 نشر من قبل Fei Pu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a parabolic stochastic PDE of the form $partial_t u=frac{1}{2}Delta u + sigma(u)eta$, where $u=u(t,,x)$ for $tge0$ and $xinmathbb{R}^d$, $sigma:mathbb{R}rightarrowmathbb{R}$ is Lipschitz continuous and non random, and $eta$ is a centered Gaussian noise that is white in time and colored in space, with a possibly-signed homogeneous spatial correlation $f$. If, in addition, $u(0)equiv1$, then we prove that, under a mild decay condition on $f$, the process $xmapsto u(t,,x)$ is stationary and ergodic at all times $t>0$. It has been argued that, when coupled with moment estimates, spatial ergodicity of $u$ teaches us about the intermittent nature of the solution to such SPDEs cite{BertiniCancrini1995,KhCBMS}. Our results provide rigorous justification of such discussions. Our methods hinge on novel facts from harmonic analysis and functions of positive type, as well as from Malliavin calculus and Poincare inequalities. We further showcase the utility of these Poincare inequalities by: (a) describing conditions that ensure that the random field $u(t)$ is mixing for every $t>0$; and by (b) giving a quick proof of a conjecture of Conus et al cite{CJK12} about the size of the intermittency islands of $u$. The ergodicity and the mixing results of this paper are sharp, as they include the classical theory of Maruyama cite{Maruyama} (see also Dym and McKean cite{DymMcKean}) in the simple setting where the nonlinear term $sigma$ is a constant function.



قيم البحث

اقرأ أيضاً

Consider a parabolic stochastic PDE of the form $partial_t u=frac{1}{2}Delta u + sigma(u)eta$, where $u=u(t,,x)$ for $tge0$ and $xinmathbb{R}^d$, $sigma:mathbb{R}tomathbb{R}$ is Lipschitz continuous and non random, and $eta$ is a centered Gaussian no ise that is white in time and colored in space, with a possibly-signed homogeneous spatial correlation function $f$. If, in addition, $u(0)equiv1$, then we prove that, under a mild decay condition on $f$, the process $xmapsto u(t,,x)$ is stationary and ergodic at all times $t>0$. It has been argued that, when coupled with moment estimates, spatial ergodicity of $u$ teaches us about the intermittent nature of the solution to such SPDEs cite{BertiniCancrini1995,KhCBMS}. Our results provide rigorous justification of of such discussions. The proof rests on novel facts about functions of positive type, and on strong localization bounds for comparison of SPDEs.
We prove Khinchin-type inequalities with sharp constants for type L random variables and all even moments. Our main tool is Hadamards factorisation theorem from complex analysis, combined with Newtons inequalities for elementary symmetric functions. Besides the case of independent summands, we also treat ferromagnetic dependencies in a nonnegative external magnetic field (thanks to Newmans generalisation of the Lee-Yang theorem). Lastly, we compare the notions of type L, ultra sub-Gaussianity (introduced by Nayar and Oleszkiewicz) and strong log-concavity (introduced by Gurvits), with the latter two being equivalent.
Given a vector $F=(F_1,dots,F_m)$ of Poisson functionals $F_1,dots,F_m$, we investigate the proximity between $F$ and an $m$-dimensional centered Gaussian random vector $N_Sigma$ with covariance matrix $Sigmainmathbb{R}^{mtimes m}$. Apart from findin g proximity bounds for the $d_2$- and $d_3$-distances, based on classes of smooth test functions, we obtain proximity bounds for the $d_{convex}$-distance, based on the less tractable test functions comprised of indicators of convex sets. The bounds for all three distances are shown to be of the same order, which is presumably optimal. The bounds are multivariate counterparts of the univariate second order Poincare inequalities and, as such, are expressed in terms of integrated moments of first and second order difference operators. The derived second order Poincare inequalities for indicators of convex sets are made possible by a new bound on the second derivatives of the solution to the Stein equation for the multivariate normal distribution. We present applications to the multivariate normal approximation of first order Poisson integrals and of statistics of Boolean models.
77 - Yuxing Wang , Kai Du 2019
In this paper we consider the Cauchy problem for $2m$-order stochastic partial differential equations of parabolic type in a class of stochastic Hoelder spaces. The Hoelder estimates of solutions and their spatial derivatives up to order $2m$ are obt ained, based on which the existence and uniqueness of solution is proved. An interesting finding of this paper is that the regularity of solutions relies on a coercivity condition that differs when $m$ is odd or even: the condition for odd $m$ coincides with the standard parabolicity condition in the literature for higher-order stochastic partial differential equations, while for even $m$ it depends on the integrability index $p$. The sharpness of the new-found coercivity condition is demonstrated by an example.
202 - Patrick Cattiaux 2016
The use of Lyapunov conditions for proving functional inequalities was initiated in [5]. It was shown in [4, 30] that there is an equivalence between a Poincar{e} inequality, the existence of some Lyapunov function and the exponential integrability o f hitting times. In the present paper, we close the scheme of the interplay between Lyapunov conditions and functional inequalities by $bullet$ showing that strong functional inequalities are equivalent to Lyapunov type conditions; $bullet$ showing that these Lyapunov conditions are characterized by the finiteness of generalized exponential moments of hitting times. We also give some complement concerning the link between Lyapunov conditions and in-tegrability property of the invariant probability measure and as such transportation inequalities , and we show that some unbounded Lyapunov conditions can lead to uniform ergodicity, and coming down from infinity property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا