ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in many computer vision tasks over the years. However, this comes at the cost of heavy computation and memory intensive network designs, suggesting potential improvements in efficiency. Convolutional layers of CNNs partly account for such an inefficiency, as they are known to learn redundant features. In this work, we exploit this redundancy, observing it as the correlation between convolutional filters of a layer, and propose an alternative approach to reproduce it efficiently. The proposed LinearConv layer learns a set of orthogonal filters, and a set of coefficients that linearly combines them to introduce a controlled redundancy. We introduce a correlation-based regularization loss to achieve such flexibility over redundancy, and control the number of parameters in turn. This is designed as a plug-and-play layer to conveniently replace a conventional convolutional layer, without any additional changes required in the network architecture or the hyperparameter settings. Our experiments verify that LinearConv models achieve a performance on-par with their counterparts, with almost a 50% reduction in parameters on average, and the same computational requirement and speed at inference.
Hardware support for deep convolutional neural networks (CNNs) is critical to advanced computer vision in mobile and embedded devices. Current designs, however, accelerate generic CNNs; they do not exploit the unique characteristics of real-time visi
Performing inference on deep learning models for videos remains a challenge due to the large amount of computational resources required to achieve robust recognition. An inherent property of real-world videos is the high correlation of information ac
The self-attention-based model, transformer, is recently becoming the leading backbone in the field of computer vision. In spite of the impressive success made by transformers in a variety of vision tasks, it still suffers from heavy computation and
Conventionally, convolutional neural networks (CNNs) process different images with the same set of filters. However, the variations in images pose a challenge to this fashion. In this paper, we propose to generate sample-specific filters for convolut
Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring is