ﻻ يوجد ملخص باللغة العربية
Neutrinoless double beta ($0 ubetabeta$) decay is a hypothetical rare nuclear transition ($T_{1/2}>10^{26}$ y). Its observation would provide an important insight about the nature of neutrinos (Dirac or Majorana particle) demonstrating that the lepton number is not conserved. This decay can be investigated with bolometers embedding the double beta decay isotope ($^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{116}$Cd, $^{130}$Te...), which perform as low temperature calorimeters (10 mK) detecting particle interactions via a small temperature rise read out by a dedicated thermometer. CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity) aims at the development of bolometric detectors (Li$_{2}$MoO$_{4}$ and TeO$_{2}$) capable of discriminating surface $alpha$ and $beta$ interactions by exploiting superconducting properties of Al film deposited on the crystal surface. We report in this paper the results of tests on prototypes performed at CSNSM (Orsay, France) that showed the capability of a-few-$mu$m-thick superconducting Al film deposited on crystal surface to discriminate surface $alpha$ from bulk events, thus providing the detector with the required surface sensitivity capability. The CROSS technology would further improve the background suppression and simplify the detector construction with a view to future competitive double beta decay searches.
Phonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact
The COBRA collaboration searches for neutrinoless double beta-decay ($0 ubetabeta$-decay) using CdZnTe semiconductor detectors with a coplanar-grid readout and a surrounding guard-ring structure. The operation of the COBRA demonstrator at the Gran Sa
A simulation tool based on GEMC framework to describe the MRPC telescope of the Extreme Energy Events (EEE) Project is presented. The EEE experiment is mainly devoted to the study of the secondary cosmic muons by using MRPC telescope distributed in h
The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modul
Multigap Resistive Plate Chambers (MRPC). The EEE network is composed, so far, of 53 telescopes, each made of three MRPC detectors; it is organized in clusters and single telescope stations distributed all over the Italian territory and installed in