ﻻ يوجد ملخص باللغة العربية
Recently, learning-based algorithms for image inpainting achieve remarkable progress dealing with squared or irregular holes. However, they fail to generate plausible textures inside damaged area because there lacks surrounding information. A progressive inpainting approach would be advantageous for eliminating central blurriness, i.e., restoring well and then updating masks. In this paper, we propose full-resolution residual network (FRRN) to fill irregular holes, which is proved to be effective for progressive image inpainting. We show that well-designed residual architecture facilitates feature integration and texture prediction. Additionally, to guarantee completion quality during progressive inpainting, we adopt N Blocks, One Dilation strategy, which assigns several residual blocks for one dilation step. Correspondingly, a step loss function is applied to improve the performance of intermediate restorations. The experimental results demonstrate that the proposed FRRN framework for image inpainting is much better than previous methods both quantitatively and qualitatively. Our codes are released at: url{https://github.com/ZongyuGuo/Inpainting_FRRN}.
Deformable image registration (DIR) is essential for many image-guided therapies. Recently, deep learning approaches have gained substantial popularity and success in DIR. Most deep learning approaches use the so-called mono-stream high-to-low, low-t
The recent physical model-free dehazing methods have achieved state-of-the-art performances. However, without the guidance of physical models, the performances degrade rapidly when applied to real scenarios due to the unavailable or insufficient data
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the recons
Recent years have witnessed the great success of deep convolutional neural networks (CNNs) in image denoising. Albeit deeper network and larger model capacity generally benefit performance, it remains a challenging practical issue to train a very dee
It has become a standard practice to use the convolutional networks (ConvNet) with RELU non-linearity in image restoration and super-resolution (SR). Although the universal approximation theorem states that a multi-layer neural network can approximat