ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferroelectric order versus metallicity in Sr$_{1-x}$Ca$_x$TiO$_{3-delta}$ ($x=0.009$)

116   0   0.0 ( 0 )
 نشر من قبل Thomas Lorenz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a thermal-expansion study of the ferroelectric phase transition in insulating Sr$_{1-x}$Ca$_x$TiO$_3$ ($x=0.009$) and its evolution upon increasing charge-carrier concentration up to $nsimeq 60 times 10^{19}$cm$^{-3}$. Although electric polarization is screened by mobile charge carriers, we find clear signatures of the ferroelectric phase transition in the thermal-expansion coefficient $alpha$ of the weakly doped metallic samples. Upon increasing $n$, the transition temperature $T_mathrm{C}(n)$ and the magnitude of the anomalies in $alpha$ rapidly decrease up to a threshold carrier density $n^star$ above which broadened anomalies remain present. There is no indication for a sign change of $alpha$ as is expected for a pressure-dependent quantum phase transition with $n$ as the control parameter. Thus, the ferroelectriclike transition is either continuously fading away or it transforms to another low-temperature phase above $n^star$, but this change hardly affects the temperature-dependent $alpha(T)$ data.



قيم البحث

اقرأ أيضاً

SrTiO$_{3}$, a quantum paraelectric, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium. Th e two orders may be accidental neighbors or intimately connected, as in the picture of quantum critical ferroelectricity. Here, we show that in Sr$_{1-x}$Ca$_{x}$TiO$_{3-delta}$ ($0.002<x<0.009$, $delta<0.001$) the ferroelectric order coexists with dilute metallicity and its superconducting instability in a finite window of doping. At a critical carrier density, which scales with the Ca content, a quantum phase transition destroys the ferroelectric order. We detect an upturn in the normal-state scattering and a significant modification of the superconducting dome in the vicinity of this quantum phase transition. The enhancement of the superconducting transition temperature with calcium substitution documents the role played by ferroelectric vicinity in the precocious emergence of superconductivity in this system, restricting possible theoretical scenarios for pairing.
The charged domain walls in ferroelectric materials exhibit intriguing physical properties. We examine herein the charged-domain-wall structures in Ca$_{3-x}$Sr$_x$Ti$_2$O$_7$ using transmission electron microscopy. When viewed along the [001] axis, the wavy charged domain walls are observed over a wide range ($>$5 $mu$m). In contrast, short charged-domain-wall fragments (from 10 to 200 nm long) occur because they are intercepted and truncated by the conventional 180$^{deg}$ domain walls. These results reveal the unusual charged domain structures in Ca$_{3-x}$Sr$_x$Ti$_2$O$_7$ and will be useful for understanding their formation process.
In the Ca$_{1-x}$La$_x$FeAs$_2$ (112) family of pnictide superconductors, we have investigated a highly overdoped composition (x = 0.56), prepared by high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transitio n at TN = 120K, well above the one at lower doping (0.15 < x < 0.27). Below the onset of long-range magnetic order at TN, the electrical resistivity is strongly reduced and is dominated by electron-electron interactions, as evident from its temperature dependence. The Seebeck coefficient shows a clear metallic behavior as in narrow band conductors. The temperature dependence of the Hall coefficient and the violation of Kohlers rule agree with the multiband character of the material. No superconductivity was observed down to 1.8 K. The success of the high-pressure synthesis encourages further investigations of the so far only partially explored phase diagram in this family of Iron-based high temperature superconductors.
We report the synthesis and superconducting properties of a metastable form of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using the conventional bromine-acetonitrile mixture for sodium deintercalation, we use an aqueous bromi ne solution. Using this method, we oxidize the sample to a point that the sodium cobaltate becomes unstable, leading to formation of other products if not controlled. This compound has the same structure as the reported superconductor, yet it exhibits a systematic variation of the superconducting transition temperature (Tc) as a function of time. Immediately after synthesis, this compound is not a superconductor, even though it contains appropriate amounts of sodium and water. The samples become superconducting with low Tc values after ~ 90 h. Tc continually increases until it reaches a maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming non-superconducting approximately 100 h later. Corresponding time-dependent neutron powder diffraction data shows that the changes in superconductivity exhibited by the metastable cobaltate correspond to slow formation of oxygen vacancies in the CoO2 layers. In effect, the formation of these defects continually reduces the cobalt oxidation state causing the sample to evolve through its superconducting life cycle. Thus, the dome-shaped superconducting phase diagram is mapped as a function of cobalt oxidation state using a single sample. The width of this dome based on the formal oxidation state of cobalt is very narrow - approximately 0.1 valence units wide. Interestingly, the maximum Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we speculate that the maximum Tc occurs near the charge ordered insulating state that correlates with the average cobalt oxidation state of 3.5.
An emerging area in condensed matter physics is the use of multilayered heterostructures to enhance ferroelectricity in complex oxides. Here, we demonstrate that optically pumping carriers across the interface between thin films of a ferroelectric (F E) insulator and a ferromagnetic metal can significantly enhance the FE polarization. The photoinduced FE state remains stable at low temperatures for over one day. This occurs through screening of the internal electric field by the photoexcited carriers, leading to a larger, more stable polarization state that may be suitable for applications in areas such as data and energy storage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا