ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-resonance tidal evolution of the Earth-Moon system influenced by orbital-scale climate change

82   0   0.0 ( 0 )
 نشر من قبل Nan Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We build a conceptual coupled model of the climate and tidal evolution of the Earth-Moon system to find the influence of the former on the latter. An energy balance model is applied to calculate steady-state temperature field from the mean annual insolation as a function of varying astronomical parameters. A harmonic oscillator model is applied to integrate the lunar orbit and Earths rotation with the tidal torque dependent on the dominant natural frequency of ocean. An ocean geometry acts as a bridge between temperature and oceanic frequency. On assumptions of a fixed hemispherical continent and an equatorial circular lunar orbit, considering only the 41 kyr periodicity of Earths obliquity $varepsilon$ and the $M_2$ tide, simulations are performed near tidal resonance for $10^6$ yr. It is verified that the climate can influence the tidal evolution via ocean. Compared with the tidal evolution with constant $varepsilon$, that with varying $varepsilon$ is slowed down; the Earth-Moon distance oscillates in phase with $varepsilon$ before the resonance maximum but exactly out of phase after that; the displacement of the oscillation is in positive correlation with the difference between oceanic frequency and tidal frequency.



قيم البحث

اقرأ أيضاً

Forming the Moon by a high-angular momentum impact may explain the Earth-Moon isotopic similarities, however, the post-impact angular momentum needs to be reduced by a factor of 2 or more to the current value (1 L_EM) after the Moon forms. Capture in to the evection resonance, occurring when the lunar perigee precession period equals one year, could remove the angular momentum excess. However the appropriate angular momentum removal appears sensitive to the tidal model and chosen tidal parameters. In this work, we use a constant-time delay tidal model to explore the Moons orbital evolution through evection. We find that exit from formal evection occurs early and that subsequently, the Moon enters a quasi-resonance regime, in which evection still regulates the lunar eccentricity even though the resonance angle is no longer librating. Although not in resonance proper, during quasi-resonance angular momentum is continuously removed from the Earth-Moon system and transferred to Earths heliocentric orbit. The final angular momentum, set by the timing of quasi-resonance escape, is a function of the ratio of tidal strength in the Moon and Earth and the absolute rate of tidal dissipation in the Earth. We consider a physically-motivated model for tidal dissipation in the Earth as the mantle cools from a molten to a partially molten state. We find that as the mantle solidifies, increased terrestrial dissipation drives the Moon out of quasi-resonance. For post-impact systems that contain >2 L_EM, final angular momentum values after quasi-resonance escape remain significantly higher than the current Earth-Moon value.
A giant impact origin for the Moon is generally accepted, but many aspects of lunar formation remain poorly understood and debated. Cuk et al. (2016) proposed that an impact that left the Earth-Moon system with high obliquity and angular momentum cou ld explain the Moons orbital inclination and isotopic similarity to Earth. In this scenario, instability during the Laplace Plane transition, when the Moons orbit transitions from the gravitational influence of Earths figure to that of the Sun, would both lower the systems angular momentum to its present-day value and generate the Moons orbital inclination. Recently, Tian and Wisdom (2020) discovered new dynamical constraints on the Laplace Plane transition and concluded that the Earth-Moon system could not have evolved from an initial state with high obliquity. Here we demonstrate that the Earth-Moon system with an initially high obliquity can evolve into the present state, and we identify a spin-orbit secular resonance as a key dynamical mechanism in the later stages of the Laplace Plane transition. Some of the simulations by Tian and Wisdom (2020) did not encounter this late secular resonance, as their model suppressed obliquity tides and the resulting inclination damping. Our results demonstrate that a giant impact that left Earth with high angular momentum and high obliquity ($theta > 61^{circ}$) is a promising scenario for explaining many properties of the Earth-Moon system, including its angular momentum and obliquity, the geochemistry of Earth and the Moon, and the lunar inclination.
233 - Kristen Menou 2014
The carbon-silicate cycle regulates the atmospheric $CO_2$ content of terrestrial planets on geological timescales through a balance between the rates of $CO_2$ volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric $CO_2$ content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.
Ozone in Earths atmosphere is known to have a radiative forcing effect on climate. Motivated by geochemical evidence for one or more nearby supernovae about 2.6 million years ago, we have investigated the question of whether a supernova at about 50 p c could cause a change in Earths climate through its impact on atmospheric ozone concentrations. We used the Planet Simulator (PlaSim) intermediate-complexity climate model with prescribed ozone profiles taken from existing atmospheric chemistry modeling. We found that the effect on globally averaged surface temperature is small, but localized changes are larger and differences in atmospheric circulation and precipitation patterns could have regional impacts.
282 - Takashi Ito , Renu Malhotra 2009
Recent lunar crater studies have revealed an asymmetric distribution of rayed craters on the lunar surface. The asymmetry is related to the synchronous rotation of the Moon: there is a higher density of rayed craters on the leading hemisphere compare d with the trailing hemisphere. Rayed craters represent generally the youngest impacts. The purpose of this paper is to test the hypotheses that (i) the population of Near-Earth asteroids (NEAs) is the source of the impactors that have made the rayed craters, and (ii) that impacts by this projectile population account quantitatively for the observed asymmetry. We carried out numerical simulations of the orbital evolution of a large number of test particles representing NEAs in order to determine directly their impact flux on the Moon. The simulations were done in two stages. In the first stage we obtained encounter statistics of NEAs on the Earths activity sphere. In the second stage we calculated the direct impact flux of the encountering particles on the surface of the Moon; the latter calculations were confined within the activity sphere of the Earth. A steady-state synthetic population of NEAs was generated from a debiased orbital distribution of the known NEAs. We find that the near-Earth asteroids do have an asymmetry in their impact flux on the Moon: apex-to-antapex ratio of 1.32 +/- 0.01. However, the observed rayed crater distributions asymmetry is significantly more pronounced: apex-to-antapex ratio of 1.65 +/- 0.16. Our results suggest the existence of an undetected population of slower (low impact velocity) projectiles, such as a population of objects nearly coorbiting with Earth; more observational study of young lunar craters is needed to secure this conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا