ﻻ يوجد ملخص باللغة العربية
The $mathbb{C}P^{N-1}$ sigma model at finite temperature is studied using lattice Monte Carlo simulations on $S_{s}^{1} times S_{tau}^{1}$ with radii $L_{s}$ and $L_{tau}$, respectively, where the ratio of the circumferences is taken to be sufficiently large ($L_{s}/L_{tau} gg 1$) to simulate the model on $mathbb{R} times S^1$. We show that the expectation value of the Polyakov loop undergoes a deconfinement crossover as $L_{tau}$ is decreased, where the peak of the associated susceptibility gets sharper for larger $N$. We find that the global PSU($N$)=SU($N$)$/{mathbb Z}_{N}$ symmetry remains unbroken at quantum and classical levels for the small and large $L_{tau}$, respectively: in the small $L_tau$ region for finite $N$, the order parameter fluctuates extensively with its expectation value consistent with zero after taking an ensemble average, while in the large $L_tau$ region the order parameter remains small with little fluctuations. We also calculate the thermal entropy and find that the degrees of freedom in the small $L_{tau}$ regime are consistent with $N-1$ free complex scalar fields, thereby indicating a good agreement with the prediction from the large-$N$ study for small $L_{tau}$.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b
We study fractional Skyrmions in a $mathbb{C}P^2$ baby Skyrme model with a generalization of the easy-plane potential. By numerical methods, we find stable, metastable, and unstable solutions taking the shapes of molecules. Various solutions possess
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS
We study the out-of-equilibrium properties of $1+1$ dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian $mathbb{Z}_{n}$ gauge group. We look at two relevant phenomena: first, we analyze the
We investigate the lattice ${mathbb C} P^{N-1}$ sigma model on $S_{s}^{1}$(large) $times$ $S_{tau}^{1}$(small) with the ${mathbb Z}_{N}$ symmetric twisted boundary condition, where a sufficiently large ratio of the circumferences ($L_{s}gg L_{tau}$)