ﻻ يوجد ملخص باللغة العربية
The late stages of stellar evolution from asymptotic giant branch stars to planetary nebulae are now known to be an active phase of molecular synthesis. Over 80 gas-phase molecules have been detected through rotational transitions in the mm/submm region. Infrared spectroscopy has also detected inorganic minerals, fullerenes, and organic solids. The synthesis of these molecules and solids take place over very low density ($<10^6$ cm$^{-3}$) and short ($sim10^3$ yr) time scales. The complex organics are observed to have mixed aromatic/aliphatic structures and may be related to the complex organics found in meteorites, comets, interplanetary dust particles, and planetary satellites. The possible links between stellar and solar system organics is discussed.
During the formation of stars, the accretion of the surrounding material toward the central object is thought to undergo strong luminosity outbursts, followed by long periods of relative quiescence, even at the early stages of star formation when the
(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COM
(Abridged) Protoplanetary disks are vital objects in star and planet formation, possessing all the material which may form a planetary system orbiting the new star. We investigate the synthesis of complex organic molecules (COMs) in disks to constrai
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet
Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at