ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Extraterrestrial Intelligence by Locating Potential ET Communication Networks in Space

51   0   0.0 ( 0 )
 نشر من قبل Ross Davis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ross Davis




اسأل ChatGPT حول البحث

There have been periodic efforts in recent decades to search for extraterrestrial intelligence (SETI), especially by trying to find an extraterrestrial (ET) radio signal or other technosignature in space. Yet, no such technosignatures have been found. Considering the vastness of space, finding such technosignatures has been described as trying to find a needle in a cosmic haystack. To help resolve this, two hypotheses are proposed to aid SETI researchers in narrowing the search for ET technosignatures, based on a network analysis approach to locate where in space potential ET communication networks would most likely be. A potential ET communication network can use exoplanets as communication access points (e.g., placing a communication satellite into planetary orbit, or an antenna on a planetary surface). The approach uses a topology where exoplanets are represented as nodes, and the lines of average distance (generalized communication paths) between adjacent exoplanets are represented as edges; the nodes and edges form local and wide planetary networks. Using the approach and data visualization on exoplanet databases can highlight locations of potential ET communication networks in space. The first hypothesis posits that an ET technosignature would more likely appear in a potentially habitable solar system containing a high concentration of planets, wherein the planets function as communication access points to facilitate a potential ET communication network. The second hypothesis posits that an ET technosignature would more likely appear in a highly concentrated cluster of potentially habitable solar systems. Contributions to the SETI field can be increased accuracy in finding ET technosignatures, increased accuracy in reaching a Schelling point (a mutual realization of how we and an ET intelligence can find each other), and promoting interdisciplinary SETI research.



قيم البحث

اقرأ أيضاً

The vast collecting area of the Square Kilometre Array (SKA), harnessed by sensitive receivers, flexible digital electronics and increased computational capacity, could permit the most sensitive and exhaustive search for technologically-produced radi o emission from advanced extraterrestrial intelligence (SETI) ever performed. For example, SKA1-MID will be capable of detecting a source roughly analogous to terrestrial high-power radars (e.g. air route surveillance or ballistic missile warning radars, EIRP (EIRP = equivalent isotropic radiated power, ~10^17 erg sec^-1) at 10 pc in less than 15 minutes, and with a modest four beam SETI observing system could, in one minute, search every star in the primary beam out to ~100 pc for radio emission comparable to that emitted by the Arecibo Planetary Radar (EIRP ~2 x 10^20 erg sec^-1). The flexibility of the signal detection systems used for SETI searches with the SKA will allow new algorithms to be employed that will provide sensitivity to a much wider variety of signal types than previously searched for. Here we discuss the astrobiological and astrophysical motivations for radio SETI and describe how the technical capabilities of the SKA will explore the radio SETI parameter space. We detail several conceivable SETI experimental programs on all components of SKA1, including commensal, primary-user, targeted and survey programs and project the enhancements to them possible with SKA2. We also discuss target selection criteria for these programs, and in the case of commensal observing, how the varied use cases of other primary observers can be used to full advantage for SETI.
69 - S.J. Tingay , C.D. Tremblay , 2018
Following from the results of the first systematic modern low frequency Search for Extraterrestrial Intelligence (SETI) using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a G alactic Anticenter field. Using the MWA in the frequency range of 99 to 122 MHz over a three hour period, a 625 sq. deg. field centered on Orion KL (in the general direction of the Galactic Anticenter) was observed with a frequency resolution of 10 kHz. Within this field, 22 exoplanets are known. At the positions of these exoplanets, we searched for narrow band signals consistent with radio transmissions from intelligent civilisations. No such signals were found with a 5-sigma detection threshold. Our sample is significantly different to the 45 exoplanets previously studied with the MWA toward the Galactic Center Tingay et al.(2016), since the Galactic Center sample is dominated by exoplanets detected using microlensing, hence at much larger distances compared to the exoplants toward the Anticenter, found via radial velocity and transit detection methods. Our average effective sensitivity to extraterrestrial transmiter power is therefore much improved for the Anticenter sample. Added to this, our data processing techniques have improved, reducing our observational errors, leading to our best detection limit being reduced by approximately a factor of four compared to our previously published results.
Abridged: The interest towards searches for extraterrestrial civilizations (ETCs) was boosted by the discovery of thousands of exoplanets. We turn to the classification of ETCs for new considerations that may help to design better strategies for ETCs searches. We take a basic taxonomic approach to ETCs and investigate the implications of the new classification on ETCs observational patterns. We use as a counter-example to our qualitative classification the quantitative scheme of Kardashev. We propose a classification based on the abilities of ETCs to modify their environment and to integrate with it: Class 0 uses the environment as it is, Class 1 modifies the it to fit its needs, Class 2 modifies itself to fit the environment and Class 3 ETC is fully integrated with the environment. Combined with the classical Kardashevs scale our scheme forms a 2d scheme for interpreting ETC properties. The new framework makes it obvious that the available energy is not an unique measure of ETCs, it may not even correlate with how well that energy is used. The possibility for progress without increased energy consumption implies lower detectability, so the existence of a Kardashev Type III ETC in the Milky Way cannot be ruled out. This reasoning weakens the Fermi paradox, allowing the existence of advanced, yet not energy hungry, low detectability ETCs. The integration of ETCs with environment makes it impossible to tell apart technosignatures from natural phenomena. Thus, the most likely opportunity for SETI searches is to look for beacons, specifically set up by them for young civilizations like us (if they want to do that is a matter of speculation). The other SETI window is to search for ETCs at technological level close to ours. To rephrase the saying of A. Clarke, sufficiently advanced civilizations are indistinguishable from nature.
The discovery of the ubiquity of habitable extrasolar planets, combined with revolutionary advances in instrumentation and observational capabilities, have ushered in a renaissance in the millenia-old quest to answer our most profound question about the Universe and our place within it - Are we alone? The Breakthrough Listen Initiative, announced in July 2015 as a 10-year 100M USD program, is the most comprehensive effort in history to quantify the distribution of advanced, technologically capable life in the universe. In this white paper, we outline the status of the on-going observing campaign with our primary observing facilities, as well as planned activities with these instruments over the next few years. We also list collaborative facilities which will conduct searches for technosignatures in either primary observing mode, or commensally. We highlight some of the novel analysis techniques we are bringing to bear on multi-petabyte data sets, including machine learning tools we are deploying to search for a broader range of technosignatures than was previously possible.
88 - Clement Vidal 2017
Pulsars have at least two impressive applications. First, they can be used as highly accurate clocks, comparable in stability to atomic clocks; secondly, a small subset of pulsars, millisecond X-ray pulsars, provide all the necessary ingredients for a passive galactic positioning system. This is known in astronautics as X-ray pulsar-based navigation (XNAV). XNAV is comparable to GPS, except that it operates on a galactic scale. I propose a SETI-XNAV research program to test the hypothesis that this pulsar positioning system might be an instance of galactic-scale engineering by extraterrestrial beings (section 4). The paper starts by exposing the basics of pulsar navigation (section 2), continues with a critique of the rejection of the extraterrestrial hypothesis when pulsars were first discovered (section 3). The core section 4 proposes lines of inquiry for SETI-XNAV, related to: the pulsar distribution and power in the galaxy; their population; their evolution; possible pulse synchronizations; pulsar usability when navigating near the speed of light; decoding galactic coordinates; directed panspermia; and information content in pulses. Even if pulsars are natural, they are likely to be used as standards by ETIs in the galaxy (section 5). I discuss possible objections and potential benefits for humanity, whether the research program succeeds or not (section 6).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا