ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft excess in the quiescent Be/X-ray pulsar RX J0812.4-3114

106   0   0.0 ( 0 )
 نشر من قبل Yue Zhao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a 72 ks XMM-Newton observation of the Be/X-ray pulsar (BeXRP) RX J0812.4-3114 in quiescence ($L_X approx 1.6 times 10^{33}~mathrm{erg~s^{-1}}$). Intriguingly, we find a two component spectrum, with a hard power-law ($Gamma approx 1.5$) and a soft blackbody-like excess below $approx 1~mathrm{keV}$. The blackbody component is consistent in $kT$ with a prior quiescent Chandra observation reported by Tsygankov et al. and has an inferred blackbody radius of $approx 10~mathrm{km}$, consistent with emission from the entire neutron star (NS) surface. There is also mild evidence for an absorption line at $approx 1~mathrm{keV}$ and/or $approx 1.4~mathrm{keV}$. The hard component shows pulsations at $P approx 31.908~mathrm{s}$ (pulsed fraction $0.84 pm 0.10$), agreeing with the pulse period seen previously in outbursts, but no pulsations were found in the soft excess (pulsed fraction $lesssim 31%$). We conclude that the pulsed hard component suggests low-level accretion onto the neutron star poles, while the soft excess seems to originate from the entire NS surface. We speculate that, in quiescence, the source switches between a soft thermal-dominated state (when the propeller effect is at work) and a relatively hard state with low-level accretion, and use the propeller cutoff to estimate the magnetic field of the system to be $lesssim 8.4 times 10^{11}~mathrm{G}$. We compare the quiescent thermal $L_X$ predicted by the standard deep crustal heating model to our observations and find that RX J0812.4-3114 has a high thermal $L_X$, at or above the prediction for minimum cooling mechanisms. This suggests that RX J0812.4-3114 either contains a relatively low-mass NS with minimum cooling, or that the system may be young enough that the NS has not fully cooled from the supernova explosion.



قيم البحث

اقرأ أيضاً

We report on an X-ray observation of the Be X-ray Binary Pulsar RX J0059.2-7138, performed by XMM-Newton in March 2014. The 19 ks long observation was carried out about three months after the discovery of the latest outburst from this Small Magellani c Cloud transient, when the source luminosity was Lx ~ 10$^{38}$ erg/s. A spin period of P=2.762383(5) s was derived, corresponding to an average spin-up of $dot{P}_{mathrm{spin}} = -(1.27pm0.01)times10^{-12}$ s $s^{-1}$ from the only previous period measurement, obtained more than 20 years earlier. The time-averaged continuum spectrum (0.2-12 keV) consisted of a hard power-law (photon index ~0.44) with an exponential cut-off at a phase-dependent energy (20-50 keV) plus a significant soft excess below about 0.5 keV. In addition, several features were observed in the spectrum: an emission line at 6.6 keV from highly ionized iron, a broad feature at 0.9-1 keV likely due to a blend of Fe L-shell lines, and narrow emission and absorption lines consistent with transitions in highly ionized oxygen, nitrogen and iron visible in the high resolution RGS data (0.4-2.1 keV). Given the different ionization stages of the narrow line components, indicative of photoionization from the luminous X-ray pulsar, we argue that the soft excess in RX J0059.2-7138 is produced by reprocessing of the pulsar emission in the inner regions of the accretion disc.
123 - N. La Palombara 2011
Many X-ray accreting pulsars have a soft excess below 10 keV. This feature has been detected also in faint sources and at low luminosity levels, suggesting that it is an ubiquitous phenomenon. In the case of the high luminosity pulsars (Lx > 10^36 er g/s), the fit of this component with thermal emission models usually provides low temperatures (kT < 0.5 keV) and large emission regions (R > a few hundred km); for this reason, it is referred to as a `soft excess. On the other hand, we recently found that in persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 100 s) Be accreting pulsars the observed excess can be modeled with a rather hot (kT > 1 keV) blackbody component of small area (R < 0.5 km), which can be interpreted as emission from the NS polar caps. In this paper we present the results of a recent XMM-Newton observation of the Galactic Be pulsar RX J0440.9+4431, which is a poorly studied member of this class of sources. We have found a best-fit period P = 204.96(+/-0.02) s, which implies an average pulsar spin-down during the last 13 years, with dP/dt ~ 6x10^(-9) s/s. The estimated source luminosity is Lx ~ 8x10^(34) erg/s: this value is higher by a factor < 10 compared to those obtained in the first source observations, but almost two orders of magnitude lower than those measured during a few outbursts detected in the latest years. The source spectrum can be described with a power law plus blackbody model, with kTbb = 1.34(+/-0.04) keV and Rbb = 273(+/-16) m, suggesting a polar-cap origin of this component. Our results support the classification of RX J0440.9+4431 as a persistent Be/NS pulsar, and confirm that the hot blackbody spectral component is a common property of this class of sources.
The X-ray spectra of many active galactic nuclei (AGN) exhibit a `soft excess below 1keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionised reflection of X-rays from the inner part of the a ccretion disc, ionised winds/absorbers, and Comptonisation. The ionised reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models, but upcoming joint XMM-NuSTAR programmes provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM+NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest observers model of a black body and neutral reflection to characterise the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.
RX J1856.5$-$3754 is the brightest and nearest ($sim 120$ pc) source among thermally emitting isolated neutron stars. Its spectra observed with {sl XMM-Newton} and {sl Chandra} satellites are well-fitted with the two-temperature ($kT^infty sim$ 32 an d 63 eV) blackbody model. Fitting ten sets of the data from {sl Suzaku} XIS0, XIS1, XIS3 and {sl XMM-Newton} EPIC-pn with the two-temperature blackbody model, we discover an excess emission, 16--26% in 0.8--1.2,keV. We examine possible causes of this keV-X-ray excess; uncertainty in the background, pile up of the low energy photons and confusion of other sources. None of them succeeds in explaining the keV-X-ray excess observed with different instruments. We thus consider this keV-X-ray excess is most likely originated in RX J1856.5$-$3754. However, it is difficult to constrain the spectral shape of the keV-X-ray excess. The third blackbody component with $kT^infty = 137^{+18}_{-14}$ eV, additional power-law component with a photon index $Gamma = 3.4^{+0.5}_{-0.6}$, or Comptonization of blackbody seed photons into power-law with a photon index $Gamma_c = 4.3^{+0.8}_{-0.8}$ can reproduce the keV-X-ray excess. We also search for the periodicity of 0.8--1.2,keV data, since 7.055 s pulsation is discovered from 0.15--1.2,keV band in the XMM Newton EPIC-pn data ($sim$1.5%). We only obtain the upper limit of pulsed fraction $<$ 3% in the keV-X-ray excess. We shortly discuss the possible origin of the keV-X-ray excess, such as synchrotron radiation and Comptonization of blackbody photons.
The Be/X-ray transient GRO J1750-27 exhibited a type-II (giant) outburst in 2015. After the source transited to quiescence, we triggered our multi-year Chandra monitoring programme to study its quiescent behaviour. The programme was designed to follo w the cooling of a potentially heated neutron-star crust due to accretion of matter during the preceding outburst, similar to what we potentially have observed before in two other Be/X-ray transients, namely 4U 0115+63 and V 0332+53. However, unlike for these other two systems, we do not find any strong evidence that the neutron-star crust in GRO J1750-27 was indeed heated during the accretion phase. We detected the source at a rather low X-ray luminosity (~10^33 erg/s) during only three of our five observations. When the source was not detected it had very low-luminosity upper limits (<10^32 erg/s; depending on assumed spectral model). We interpret these detections and the variability observed as emission likely due to very low-level accretion onto the neutron star. We also discuss why the neutron-star crust in GRO J1750-27 might not have been heated while the ones in 4U 0115+63 and V 0332+53 possibly were.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا