ﻻ يوجد ملخص باللغة العربية
Personalized models of the gut microbiome are valuable for disease prevention and treatment. For this, one requires a mathematical model that predicts microbial community composition and the emergent behavior of microbial communities. We seek a modeling strategy that can capture emergent behavior when built from sets of universal individual interactions. Our investigation reveals that species-metabolite interaction modeling is better able to capture emergent behavior in community composition dynamics than direct species-species modeling. Using publicly available data, we examine the ability of species-species models and species-metabolite models to predict trio growth experiments from the outcomes of pair growth experiments. We compare quadratic species-species interaction models and quadratic species-metabolite interaction models, and conclude that only species-metabolite models have the necessary complexity to to explain a wide variety of interdependent growth outcomes. We also show that general species-species interaction models cannot match patterns observed in community growth dynamics, whereas species-metabolite models can. We conclude that species-metabolite modeling will be important in the development of accurate, clinically useful models of microbial communities.
In this paper we present a discrete dynamical population modeling of invasive species, with reference to the swamp crayfish Procambarus clarkii. Since this species can cause environmental damage of various kinds, it is necessary to evaluate its expec
Niche and neutral theory are two prevailing, yet much debated, ideas in ecology proposed to explain the patterns of biodiversity. Whereas niche theory emphasizes selective differences between species and interspecific interactions in shaping the comm
Population dynamics of a competitive two-species system under the influence of random events are analyzed and expressions for the steady-state population mean, fluctuations, and cross-correlation of the two species are presented. It is shown that ran
Cyclic dominance is frequently believed to be a mechanism that maintains diversity of competing species. But this delicate balance could also be fragile if some of the members is weakened because an extinction of a species will involve the annihilati
The competitive exclusion principle asserts that coexisting species must occupy distinct ecological niches (i.e. the number of surviving species can not exceed the number of resources). An open question is to understand if and how different resource