ﻻ يوجد ملخص باللغة العربية
Decentralized swarm robotic solutions to searching for targets that emit a spatially varying signal promise task parallelism, time efficiency, and fault tolerance. It is, however, challenging for swarm algorithms to offer scalability and efficiency, while preserving mathematical insights into the exhibited behavior. A new decentralized search method (called Bayes-Swarm), founded on batch Bayesian Optimization (BO) principles, is presented here to address these challenges. Unlike swarm heuristics approaches, Bayes-Swarm decouples the knowledge generation and task planning process, thus preserving insights into the emergent behavior. Key contributions lie in: 1) modeling knowledge extraction over trajectories, unlike in BO; 2) time-adaptively balancing exploration/exploitation and using an efficient local penalization approach to account for potential interactions among different robots planned samples; and 3) presenting an asynchronous implementation of the algorithm. This algorithm is tested on case studies with bimodal and highly multimodal signal distributions. Up to 76 times better efficiency is demonstrated compared to an exhaustive search baseline. The benefits of exploitation/exploration balancing, asynchronous planning, and local penalization, and scalability with swarm size, are also demonstrated.
Swarm robotic search is concerned with searching targets in unknown environments (e.g., for search and rescue or hazard localization), using a large number of collaborating simple mobile robots. In such applications, decentralized swarm systems are t
Multiple robotic systems, working together, can provide important solutions to different real-world applications (e.g., disaster response), among which task allocation problems feature prominently. Very few existing decentralized multi-robotic task a
One of the crucial problems in robotic swarm-based operation is to search and neutralize heterogeneous targets in an unknown and uncertain environment, without any communication within the swarm. Here, some targets can be neutralized by a single robo
Target search with unmanned aerial vehicles (UAVs) is relevant problem to many scenarios, e.g., search and rescue (SaR). However, a key challenge is planning paths for maximal search efficiency given flight time constraints. To address this, we propo
We present HiDe, a novel hierarchical reinforcement learning architecture that successfully solves long horizon control tasks and generalizes to unseen test scenarios. Functional decomposition between planning and low-level control is achieved by exp