ﻻ يوجد ملخص باللغة العربية
The noble-alkali comagnetometer, developed in recent years, has been shown to be a very accurate measuring device of anomalous magnetic-like fields. An ultra-light relic axion-like particle can source an anomalous field that permeates space, allowing for its detection by comagnetometers. Here we derive new constraints on relic axion-like particles interaction with neutrons and electrons from old comagnetometer data. We show that the decade-old experimental data place the most stringent terrestrial constraints to date on ultra-light axion-like particles coupled to neutrons. The constraints are comparable to those from stellar cooling, providing a complementary probe. Future planned improvements of comagnetometer measurements through altered geometry, constituent content and data analysis techniques could enhance the sensitivity to axion-like relics coupled to nucleons or electrons by many orders of magnitude.
Constraints on dark matter from the first CMS and ATLAS SUSY searches are investigated. It is shown that within the minimal supergravity model, the early search for supersymmetry at the LHC has depleted a large portion of the signature space in dark
Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neu
Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV t
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need
Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in