ﻻ يوجد ملخص باللغة العربية
Persistently active lava lakes show continuous outgassing and open convection over years to decades. Ray Lake, the lava lake at Mount Erebus, Ross Island, Antarctica, maintains long-term, near steady-state behavior in temperature, heat flux, gas flux, lake level, and composition. This activity is superposed by periodic small pulses of gas and hot magma every 5-18 minutes and disrupted by sporadic Strombolian eruptions. The periodic pulses have been attributed to a variety of potential processes including unstable bidirectional flow in the conduit feeding the lake. In contrast to hypotheses invoking a conduit source for the observed periodicity, we test the hypothesis that the behavior could be the result of dynamics within the lake itself, independent of periodic influx from the conduit. We perform numerical simulations of convection in Ray Lake driven by both constant and periodic inflow of gas-rich magma from the conduit to identify whether the two cases have different observational signatures at the surface. Our simulations show dripping diapirs or pulsing plumes leading to observable surface behavior with periodicities in the range of 5-20 minutes. We conclude that a convective speed faster than the inflow speed can result in periodic behavior without requiring periodicity in conduit dynamics. This finding suggests that the surface behavior of lava lakes might be less indicative of volcanic conduit processes in persistently outgassing volcanoes than previously thought, and that dynamics within the lava lake itself may modify or overprint patterns emerging from the conduit.
Planetary cores consist of liquid metals (low Prandtl number $Pr$) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number $Ek$) planetary core using a fully 3D direct numerical simulation. Near the critical
Turbulent mixing processes in deep alpine Lake Garda (I) have not extensively been observed. Knowledge about drivers of turbulent fluxes are important for insights in the transport of matter, nutrients and pollutants, in the lake and in natural water
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a c
A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused o
Multi-phase reactive transport processes are ubiquitous in igneous systems. A challenging aspect of modelling igneous phenomena is that they range from solid-dominated porous to liquid-dominated suspension flows and therefore entail a wide spectrum o