ترغب بنشر مسار تعليمي؟ اضغط هنا

Unfolding codimension-two subsumed homoclinic connections in two-dimensional piecewise-linear maps

89   0   0.0 ( 0 )
 نشر من قبل David Simpson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For piecewise-linear maps, the phenomenon that a branch of a one-dimensional unstable manifold of a periodic solution is completely contained in its stable manifold is codimension-two. Unlike codimension-one homoclinic corners, such `subsumed homoclinic connections can be associated with stable periodic solutions. The purpose of this paper is to determine the dynamics near a generic subsumed homoclinic connection in two dimensions. Assuming the eigenvalues associated with the periodic solution satisfy $0 < |lambda| < 1 < sigma < frac{1}{|lambda|}$, in a two-parameter unfolding there exists an infinite sequence of roughly triangular regions within which the map has a stable single-round periodic solution. The result applies to both discontinuous and continuous maps, although these cases admit different characterisations for the border-collision bifurcations that correspond to boundaries of the regions. The result is illustrated with a discontinuous map of Mira and the two-dimensional border-collision normal form.



قيم البحث

اقرأ أيضاً

Global resonance is a mechanism by which a homoclinic tangency of a smooth map can have infinitely many asymptotically stable, single-round periodic solutions. To understand the bifurcation structure one would expect to see near such a tangency, in t his paper we study one-parameter perturbations of typical globally resonant homoclinic tangencies. We assume the tangencies are formed by the stable and unstable manifolds of saddle fixed points of two-dimensional maps. We show the perturbations display two infinite sequences of bifurcations, one saddle-node the other period-doubling, between which single-round periodic solutions are asymptotically stable. Generically these scale like $|lambda|^{2 k}$, as $k to infty$, where $-1 < lambda < 1$ is the stable eigenvalue associated with the fixed point. If the perturbation is taken tangent to the surface of codimension-one homoclinic tangencies, they instead scale like $frac{|lambda|^k}{k}$. We also show slower scaling laws are possible if the perturbation admits further degeneracies.
Chaotic dynamics can be quite heterogeneous in the sense that in some regions the dynamics are unstable in more directions than in other regions. When trajectories wander between these regions, the dynamics is complicated. We say a chaotic invariant set is heterogeneous when arbitrarily close to each point of the set there are different periodic points with different numbers of unstable dimensions. We call such dynamics heterogeneous chaos (or hetero-chaos), While we believe it is common for physical systems to be hetero-chaotic, few explicit examples have been proved to be hetero-chaotic. Here we present two more explicit dynamical systems that are particularly simple and tractable with computer. It will give more intuition as to how complex even simple systems can be. Our maps have one dense set of periodic points whose orbits are 1D unstable and another dense set of periodic points whose orbits are 2D unstable. Moreover, they are ergodic relative to the Lebesgue measure.
77 - David J.W. Simpson 2020
We show how the existence of three objects, $Omega_{rm trap}$, ${bf W}$, and $C$, for a continuous piecewise-linear map $f$ on $mathbb{R}^N$, implies that $f$ has a topological attractor with a positive Lyapunov exponent. First, $Omega_{rm trap} subs et mathbb{R}^N$ is trapping region for $f$. Second, ${bf W}$ is a finite set of words that encodes the forward orbits of all points in $Omega_{rm trap}$. Finally, $C subset T mathbb{R}^N$ is an invariant expanding cone for derivatives of compositions of $f$ formed by the words in ${bf W}$. We develop an algorithm that identifies these objects for two-dimensional homeomorphisms comprised of two affine pieces. The main effort is in the explicit construction of $Omega_{rm trap}$ and $C$. Their existence is equated to a set of computable conditions in a general way. This results in a computer-assisted proof of chaos throughout a relatively large regime of parameter space. We also observe how the failure of $C$ to be expanding can coincide with a bifurcation of $f$. Lyapunov exponents are evaluated using one-sided directional derivatives so that forward orbits that intersect a switching manifold (where $f$ is not differentiable) can be included in the analysis.
We study the problem of preservation of canard connections for time discretized fast-slow systems with canard fold points. In order to ensure such preservation, certain favorable structure preserving properties of the discretization scheme are requir ed. Conventional schemes do not possess such properties. We perform a detailed analysis for an unconventional discretization scheme due to Kahan. The analysis uses the blow-up method to deal with the loss of normal hyperbolicity at the canard point. We show that the structure preserving properties of the Kahan discretization imply a similar result as in continuous time, guaranteeing the occurrence of canard connections between attracting and repelling slow manifolds upon variation of a bifurcation parameter. The proof is based on a non-canonical Melnikov computation along an invariant separating curve, which organizes the dynamics of the map similarly to the ODE problem.
For piecewise monotone interval maps we look at Birkhoff spectra for regular potential functions. This means considering the Hausdorff dimension of the set of points for which the Birkhoff average of the potential takes a fixed value. In the uniforml y hyperbolic case we obtain complete results, in the case with parabolic behaviour we are able to describe the part of the sets where the lower Lyapunov exponent is positive. In addition we give some lower bounds on the full spectrum in this case. This is an extension of work of Hofbauer on the entropy and Lyapunov spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا