ﻻ يوجد ملخص باللغة العربية
Nowadays astroparticle physics faces a rapid data volume increase. Meanwhile, there are still challenges of testing the theoretical models for clarifying the origin of cosmic rays by applying a multi-messenger approach, machine learning and investigation of the phenomena related to the rare statistics in detecting incoming particles. The problems are related to the accurate data mapping and data management as well as to the distributed storage and high-performance data processing. In particular, one could be interested in employing such solutions in study of air-showers induced by ultra-high energy cosmic and gamma rays, testing new hypotheses of hadronic interaction or cross-calibration of different experiments. KASCADE (Karlsruhe, Germany) and TAIGA (Tunka valley, Russia) are experiments in the field of astroparticle physics, aiming at the detection of cosmic-ray air-showers, induced by the primaries in the energy range of about hundreds TeVs to hundreds PeVs. They are located at the same latitude and have an overlap in operation runs. These factors determine the interest in performing a joint analysis of these data. In the German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI), modern technologies of the distributed data management are being employed for establishing a reliable open access to the experimental cosmic-ray physics data collected by KASCADE and the Tunka-133 setup of TAIGA.
Current and future astroparticle physics experiments are operated or are being built to observe highly energetic particles, high energy electromagnetic radiation and gravitational waves originating from all kinds of cosmic sources. The data volumes t
The `KASCADE Cosmic ray Data Centre is a web portal (url{https://kcdc.ikp.kit.edu}), where the data of the astroparticle physics experiment KASCADE-Grande are made available for the interested public. The KASCADE experiment was a large-area detector
Data access and interoperability module connects the observation proposals, data, virtual machines and software. According to the unique identifier of PI (principal investigator), an email address or an internal ID, data can be collected by PIs propo
The SiPM is a novel solid state photodetector which can be operated in the single photon counting mode. It has excellent features, such as high quantum efficiency, good charge resolution, fast response, very compact size, high gain of 106, very low p
We present a high-performance, graphics processing unit (GPU)-based framework for the efficient analysis and visualization of (nearly) terabyte (TB)-sized 3-dimensional images. Using a cluster of 96 GPUs, we demonstrate for a 0.5 TB image: (1) volume