ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to derive rigorously macroscopic traffic flow models from microscopic models. More precisely, for the microscopic models, we consider follow-the-leader type models with different types of drivers and vehicles which are distributed randomly on the road. After a rescaling, we show that the cumulative distribution function converge to the solution of a macroscopic model. We also make the link between this macroscopic model and the so-called LWR model.
We study vehicular traffic on a road with multiple lanes and dense, unidirectional traffic following the traditional Lighthill-Whitham-Richards model where the velocity in each lane depends only on the density in the same lane. The model assumes that
An idealized electrostatically actuated microelectromechanical system (MEMS) involving an elastic plate with a heterogeneous dielectric material is considered. Starting from the electrostatic and mechanical energies, the governing evolution equations
We consider two discrete completely integrable evolutions: the Toda Lattice and the Ablowitz-Ladik system. The principal thrust of the paper is the development of microscopic conservation laws that witness the conservation of the perturbation determi
We analyze numerically some macroscopic models of pedestrian motion such as Hughes model [1] and mean field game with nonlinear mobilities [2] modeling fast exit scenarios in pedestrian crowds. A model introduced by Hughes consisting of a non-linear
Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do