ﻻ يوجد ملخص باللغة العربية
We address the problem of unsupervised domain adaptation (UDA) by learning a cross-domain agnostic embedding space, where the distance between the probability distributions of the two source and target visual domains is minimized. We use the output space of a shared cross-domain deep encoder to model the embedding space anduse the Sliced-Wasserstein Distance (SWD) to measure and minimize the distance between the embedded distributions of two source and target domains to enforce the embedding to be domain-agnostic.Additionally, we use the source domain labeled data to train a deep classifier from the embedding space to the label space to enforce the embedding space to be discriminative.As a result of this training scheme, we provide an effective solution to train the deep classification network on the source domain such that it will generalize well on the target domain, where only unlabeled training data is accessible. To mitigate the challenge of class matching, we also align corresponding classes in the embedding space by using high confidence pseudo-labels for the target domain, i.e. assigning the class for which the source classifier has a high prediction probability. We provide experimental results on UDA benchmark tasks to demonstrate that our method is effective and leads to state-of-the-art performance.
Unsupervised domain adaptation aims to transfer the classifier learned from the source domain to the target domain in an unsupervised manner. With the help of target pseudo-labels, aligning class-level distributions and learning the classifier in the
Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a emph{target domain} whose distribution differs from the training data distribution, referred as the emph{source domain}. It
We address the problem of severe class imbalance in unsupervised domain adaptation, when the class spaces in source and target domains diverge considerably. Till recently, domain adaptation methods assumed the aligned class spaces, such that reducing
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution di
Conventional unsupervised domain adaptation (UDA) studies the knowledge transfer between a limited number of domains. This neglects the more practical scenario where data are distributed in numerous different domains in the real world. The domain sim