ﻻ يوجد ملخص باللغة العربية
Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for constructing multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the derivation of contiguity relations for special functions admitting multi-fold integral representations, and to the decomposition of a few Feynman integrals at one- and two-loops, as first steps towards potential applications to generic multi-loop integrals.
We present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, empl
Canonical Feynman integrals are of great interest in the study of scattering amplitudes at the multi-loop level. We propose to construct $dlog$-form integrals of the hypergeometric type, treat them as a representation of Feynman integrals, and projec
In this manuscript, which is to appear in the proceedings of the conference MathemAmplitude 2019 in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integra
We introduce an algebro-geometrically motived integration-by-parts (IBP) reduction method for multi-loop and multi-scale Feynman integrals, using a framework for massively parallel computations in computer algebra. This framework combines the compute
Integration-by-parts identities between loop integrals arise from the vanishing integration of total derivatives in dimensional regularization. Generic choices of total derivatives in the Baikov or parametric representations lead to identities which