ﻻ يوجد ملخص باللغة العربية
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynchs probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condons simple policy iteration on these games. The correctness of Condons approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in $textbf{UP} cap textbf{coUP}$ and textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to Memoli. As an additional contribution, in this paper we show that Memolis result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary $omega$-regular properties, expressed, eg., as LTL formulas.
The paper addresses the problem of computing maximal expected time to termination of probabilistic timed automata (PTA) models, under the condition that the system will, eventually, terminate. This problem can exhibit high computational complexity, i
In [1], we introduced the weakly synchronizing languages for probabilistic automata. In this report, we show that the emptiness problem of weakly synchronizing languages for probabilistic automata is undecidable. This implies that the decidability re
Providing compact and understandable counterexamples for violated system properties is an essential task in model checking. Existing works on counterexamples for probabilistic systems so far computed either a large set of system runs or a subset of t
This short note aims at proving that the isolation problem is undecidable for probabilistic automata with only one probabilistic transition. This problem is known to be undecidable for general probabilistic automata, without restriction on the number
We characterize the class of nondeterministic ${omega}$-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata `good-for-MDPs (GFM). We show that GFM automata are closed under classic simulation