ترغب بنشر مسار تعليمي؟ اضغط هنا

GASP. XX. From the loose spatially-resolved to the tight global SFR-Mass relation in local spiral galaxies

73   0   0.0 ( 0 )
 نشر من قبل Benedetta Vulcani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exploiting the sample of 30 local star-forming, undisturbed late-type galaxies in different environments drawn from the GAs Stripping Phenomena in galaxies with MUSE (GASP), we investigate the spatially resolved Star Formation Rate-Mass ({Sigma}SFR-{Sigma}_star) relation. Our analysis includes also the galaxy outskirts (up to >4 effective radii, re), a regime poorly explored by other Integral Field Spectrograph surveys. Our observational strategy allows us to detect H{alpha} out to more than 2.7re for 75% of the sample. Considering all galaxies together, the correlation between the {Sigma}SFR and {Sigma}_star is quite broad, with a scatter of 0.3 dex. It gets steeper and shifts to higher {Sigma}_star values when external spaxels are excluded and moving from less to more massive galaxies. The broadness of the overall relation suggests galaxy-by-galaxy variations. Indeed, each object is characterized by a distinct {Sigma}SFR-{Sigma}_star relation and in some cases the correlation is very loose. The scatter of the relation mainly arises from the existence of bright off-center star-forming knots whose {Sigma}SFR-{Sigma}_star relation is systematically broader than that of the diffuse component. The {Sigma}SFR-{Sigma}tot gas (total gas surface density) relation is as broad as the {Sigma}SFR-{Sigma}_star relation, indicating that the surface gas density is not a primary driver of the relation. Even though a large galaxy-by-galaxy variation exists, mean {Sigma}SFR and {Sigma}_star values vary of at most 0.7 dex across galaxies. We investigate the relationship between the local and global SFR-M_star relation, finding that the latter is driven by the existence of the size-mass relation.



قيم البحث

اقرأ أيضاً

The study of the spatially resolved Star Formation Rate-Mass (Sigma_SFR-Sigma_M) relation gives important insights on how galaxies assemble at different spatial scales. Here we present the analysis of the Sigma_SFR-Sigma_M of 40 local cluster galaxie s undergoing ram pressure stripping drawn from the GAs Stripping Phenomena in galaxies (GASP) sample. Considering their integrated properties, these galaxies show a SFR enhancement with respect to undisturbed galaxies of similar stellar mass; we now exploit spatially resolved data to investigate the origin and location of the excess. Even on ~1kpc scales, stripping galaxies present a systematic enhancement of Sigma_SFR (~0.35 dex at Sigma_M =108^M_sun/kpc^2) at any given Sigma_M compared to their undisturbed counterparts. The excess is independent on the degree of stripping and of the amount of star formation in the tails and it is visible at all galactocentric distances within the disks, suggesting that the star formation is most likely induced by compression waves from ram pressure. Such excess is larger for less massive galaxies and decreases with increasing mass. As stripping galaxies are characterised by ionised gas beyond the stellar disk, we also investigate the properties of 411 star forming clumps found in the galaxy tails. At any given stellar mass density, these clumps are systematically forming stars at a higher rate than in the disk, but differences are reconciled when we just consider the mass formed in the last few 10^8yr ago, suggesting that on these timescales the local mode of star formation is similar in the tails and in the disks.
Our understanding of the structure, composition and evolution of galaxies has strongly improved in the last decades, mostly due to new results based on large spectroscopic and imaging surveys. In particular, the nature of ionized gas, its ionization mechanisms, its relation with the stellar properties and chemical composition, the existence of scaling relations that describe the cycle between stars and gas, and the corresponding evolution patterns have been widely explored and described. More recently, the introduction of additional techniques, in particular Integral Field Spectroscopy, and their use in large galaxy surveys, have forced us to re-interpret most of those recent results from a spatially resolved perspective. This review is aimed to complement recent efforts to compile and summarize this change of paradigm in the interpretation of galaxy evolution. In particular we cover three particular aspects not fully covered in detail in recent reviews: (i) the spatially resolved nature of the ionization properties in galaxies and the confusion introduced by considering just integrated quantities; (ii) the nature of the global scaling relations and their relations with the spatially resolved ones; and (iii) the dependence of the radial gradients and characteristic properties of the stellar populations and ionized gas on stellar mass and galaxy morphology. To this end we replicate published results, and present novel ones, based on the largest compilation of IFS data of galaxies in the nearby universe to date.
We report two-dimensional spectroscopic analysis of massive red spiral galaxies ($M_{*}$ $>$ 10$^{10.5}$ $M_{odot}$) and compare them to blue spiral and red elliptical galaxies above the same mass limit based on the public SDSS DR15 MaNGA observation s. We find that the stellar population properties of red spiral galaxies are more similar to those of elliptical galaxies than to blue spiral galaxies. Red spiral galaxies show a shallow mass-weighted age profile, and they have higher stellar metallicity and Mgb/${rm langle Fe rangle}$ across the whole 1.5$R_{rm e}$ as compared to blue spirals, but all these properties are close to those of elliptical galaxies. One scenario to explain this is that red spirals form as remnants of very gas-rich major mergers that happened above $z$$sim$1.
The global Schmidt law of star formation provides a power-law relation between the surface densities of star-formation rate (SFR) and gas, and successfully explains plausible scenarios of galaxy formation and evolution. However, star formation being a multi-scale process, requires spatially-resolved analysis for a better understanding of the physics of star formation. It has been shown that the removal of a diffuse background from SFR tracers, such as H$alpha$, far-ultraviolet (FUV), infrared, leads to an increase in the slope of the sub-galactic Schmidt relation. We reinvestigate the local Schmidt relations in nine nearby spiral galaxies taking into account the effect of inclusion and removal of diffuse background in SFR tracers as well as in the atomic gas.We used multiwavelength data obtained as part of the surveys such as SINGS, KINGFISH, THINGS, and HERACLES. Making use of a novel split of the overall light distribution as a function of spatial scale, we subtracted the diffuse background in the SFR tracers as well as the atomic gas. Using aperture photometry, we study the Schmidt relations on background subtracted and unsubtracted data at physical scales varying between 0.5--2 kpc. The fraction of diffuse background varies from galaxy to galaxy and accounts to $sim$34 % in H$alpha$, $sim$43 % in FUV, $sim$37 % in 24 $mu$m, and $sim$75% in H I on average. We find that the inclusion of diffuse background in SFR tracers leads to a linear molecular gas Schmidt relation and a bimodal total gas Schmidt relation. However, the removal of diffuse background in SFR tracers leads to a super-linear molecular gas Schmidt relation. A further removal of the diffuse background from atomic gas results in a slope $sim$1.4 $pm$ 0.1, which agrees with dynamical models of star formation accounting for flaring effects in the outer regions of galaxies.
Exploiting a sample of 680 star-forming galaxies from the Padova-Millennium GalaxyGroup Catalog (PM2GC) (Calvi et al. 2011) in the range 0.038<z<0.104, we present a detailed analysis of the Star Formation Rate (SFR)-stellar mass (M_star) and specific SFR(SSFR)-M_star relations as a function of environment. We adopt three different parameterizations of environment, to probe different scales. We consider separately 1) galaxies in groups, binary and single systems, defined in terms of a Friends-of-Friends algorithm, 2) galaxies located at different projected local densities, 3) galaxies in haloes of different mass. Overall, above logM_ast/M_sun>10.25 and SSFR>10^{-12} yr^{-1}, the SFR-M_ast and SSFR-M_ast relations do not depend on environment, when the global environment is used, while when the halo mass is considered, high mass haloes might have a systematically lower (S)SFR-M_ast relation. Finally, when local densities are exploited, at any given mass galaxies in less dense environments have systematically higher values of SFR. All the relations are characterized by a large scatter ({sigma}~0.6), which is dueto the coexistence of galaxies of different morphological types. Indeed, at any given mass, late-types are characterized by systematically higher values of SFR and SSFR than S0s and ellipticals. Galaxies of the same morphology show similar trends in all the environments, but their incidence strongly depends on environment and on the environmental parametrization adopted, with late-types generally becoming less common in denser environments, contrasted by the increase of ellipticals and/or S0s. Our results suggest that in the local universe morphology and local interactions, probed by the local density parameterization, have dominant roles in driving the characteristics of the SFR-M_ast relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا