ﻻ يوجد ملخص باللغة العربية
A recent proposal of data dependent similarity called Isolation Kernel/Similarity has enabled SVM to produce better classification accuracy. We identify shortcomings of using a tree method to implement Isolation Similarity; and propose a nearest neighbour method instead. We formally prove the characteristic of Isolation Similarity with the use of the proposed method. The impact of Isolation Similarity on density-based clustering is studied here. We show for the first time that the clustering performance of the classic density-based clustering algorithm DBSCAN can be significantly uplifted to surpass that of the recent density-peak clustering algorithm DP. This is achieved by simply replacing the distance measure with the proposed nearest-neighbour-induced Isolation Similarity in DBSCAN, leaving the rest of the procedure unchanged. A new type of clusters called mass-connected clusters is formally defined. We show that DBSCAN, which detects density-connected clusters, becomes one which detects mass-connected clusters, when the distance measure is replaced with the proposed similarity. We also provide the condition under which mass-connected clusters can be detected, while density-connected clusters cannot.
Data clustering with uneven distribution in high level noise is challenging. Currently, HDBSCAN is considered as the SOTA algorithm for this problem. In this paper, we propose a novel clustering algorithm based on what we call graph of density topolo
Explaining the predictions made by complex machine learning models helps users to understand and accept the predicted outputs with confidence. One promising way is to use similarity-based explanation that provides similar instances as evidence to sup
This paper develops results for the next nearest neighbour Ising model on random graphs. Besides being an essential ingredient in classic models for frustrated systems, second neighbour interactions interactions arise naturally in several application
Proposed in 1991, Least Mean Square Error Reconstruction for self-organizing network, shortly Lmser, was a further development of the traditional auto-encoder (AE) by folding the architecture with respect to the central coding layer and thus leading
We are interested in the problem of finding $k$ nearest neighbours in the plane and in the presence of polygonal obstacles ($textit{OkNN}$). Widely used algorithms for OkNN are based on incremental visibility graphs, which means they require costly a