ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the beam-helicity asymmetry in photoproduction of $pi^{0}eta$ pairs on carbon, aluminum, and lead

116   0   0.0 ( 0 )
 نشر من قبل Vahe Sokhoyan
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The beam-helicity asymmetry was measured, for the first time, in photoproduction of $pi^{0}eta$ pairs on carbon, aluminum, and lead, with the A2 experimental setup at MAMI. The results are compared to an earlier measurement on a free proton and to the corresponding theoretical calculations. The Mainz model is used to predict the beam-helicity asymmetry for the nuclear targets. The present results indicate that the photoproduction mechanism for $pi^{0}eta$ pairs on nuclei is similar to photoproduction on a free nucleon. This process is dominated by the $D_{33}$ partial wave with the $etaDelta(1232)$ intermediate state.



قيم البحث

اقرأ أيضاً

88 - Z. Akbar , P. Roy , S. Park 2017
The double-polarization observable $E$ was studied for the reaction $gamma pto pomega$ using the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at the Thomas Jefferson National Accelerator Facility and the longitudinally-polarized frozen-spin t arget (FROST). The observable was measured from the charged decay mode of the meson, $omegatopi^+pi^-pi^0$, using a circularly-polarized tagged-photon beam with energies ranging from the $omega$ threshold at 1.1 to 2.3 GeV. A partial-wave analysis within the Bonn-Gatchina framework found dominant contributions from the $3/2^+$ partial wave near threshold, which is identified with the sub-threshold $N(1720),3/2^+$ nucleon resonance. To describe the entire data set, which consisted of $omega$ differential cross sections and a large variety of polarization observables, further contributions from other nucleon resonances were found to be necessary. With respect to non-resonant mechanisms, $pi$ exchange in the $t$-channel was found to remain small across the analyzed energy range, while pomeron $t$-channel exchange gradually grew from the reaction threshold to dominate all other contributions above $W approx 2$ GeV.
172 - M. Oberle , B. Krusche , J. Ahrens 2013
Beam-helicity asymmetries have been measured at the MAMI accelerator in Mainz for the photoproduction of neutral pion pairs in the reactions $vec{gamma}prightarrow ppi^0pi^0$ and $vec{gamma}drightarrow (n)ppi^0pi^0$, $vec{gamma}drightarrow (p)npi^0pi ^0$ off free protons and off quasi-free nucleons bound in the deuteron for incident photon energies up to 1.4 GeV. Circularly polarized photons were produced from bremsstrahlung of longitudinally polarized electrons and tagged with the Glasgow magnetic spectrometer. Decay photons from the $pi^0$ mesons, recoil protons, and recoil neutrons were detected in the 4$pi$ covering electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. After kinematic reconstruction of the final state, excellent agreement was found between the results for free and quasi-free protons. This demonstrates that the free-nucleon behavior of such observables can be extracted from measurements with quasi-free nucleons, which is the only possibility for the neutron. Contrary to expectations, the measured asymmetries are very similar for reactions off protons and neutrons. The results are compared to the predictions from the Two-Pion-MAID reaction model and (for the proton) also to the Bonn-Gatchina coupled channel analysis.
We report measurements of the photon beam asymmetry $Sigma$ for the reactions $vec{gamma}pto ppi^0$ and $vec{gamma}pto peta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jeffe rson Labs Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $pi^0$ measurements and are the first $eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Beam-helicity asymmetries have been measured at the MAMI accelerator in Mainz for the photoproduction of mixed-charge pion pairs in the reactions $boldsymbol{gamma}prightarrow npi^0pi^+$ off free protons and $boldsymbol{gamma}drightarrow (p)ppi^0pi^- $ and $boldsymbol{gamma}drightarrow (n)npi^0pi^+$ off quasi-free nucleons bound in the deuteron for incident photon energies up to 1.4 GeV. Circularly polarized photons were produced from bremsstrahlung of longitudinally polarized electrons and tagged with the Glasgow-Mainz magnetic spectrometer. The charged pions, recoil protons, recoil neutrons, and decay photons from $pi^0$ mesons were detected in the 4$pi$ electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. Using a complete kinematic reconstruction of the final state, excellent agreement was found between the results for free and quasi-free protons, suggesting that the quasi-free neutron results are also a close approximation of the free-neutron asymmetries. A comparison of the results to the predictions of the Two-Pion-MAID reaction model shows that the reaction mechanisms are still not well understood, in particular at low incident photon energies in the second nucleon-resonance region.
Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $eta$ photoproduction reaction $gamma p rightarrow eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in H all B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the Julich model to examine the case for the existence of a narrow $N^*$ resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the E observable using that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا