ﻻ يوجد ملخص باللغة العربية
In this paper, we present a convolution neural network based method to recover the light intensity distribution from the overlapped dispersive spectra instead of adding an extra light path to capture it directly for the first time. Then, we construct a single-path sub-Hadamard snapshot spectrometer based on our previous dual-path snapshot spectrometer. In the proposed single-path spectrometer, we use the reconstructed light intensity as the original light intensity and recover high signal-to-noise ratio spectra successfully. Compared with dual-path snapshot spectrometer, the network based single-path spectrometer has a more compact structure and maintains snapshot and high sensitivity. Abundant simulated and experimental results have demonstrated that the proposed method can obtain a better reconstructed signal-to-noise ratio spectrum than the dual-path sub-Hadamard spectrometer because of its higher light throughput.
Over the past decades, enormous efforts have been made to improve the performance of linear or nonlinear mixing models for hyperspectral unmixing, yet their ability to simultaneously generalize various spectral variabilities and extract physically me
Snapshot compressive imaging (SCI) aims to record three-dimensional signals via a two-dimensional camera. For the sake of building a fast and accurate SCI recovery algorithm, we incorporate the interpretability of model-based methods and the speed of
Sparse model is widely used in hyperspectral image classification.However, different of sparsity and regularization parameters has great influence on the classification results.In this paper, a novel adaptive sparse deep network based on deep archite
We present a robust high signal-to-noise ratio (SNR) snapshot multiplex spectrometer with sub-Hadamard-S matrix coding. We demonstrated for the first time that the sub-Hadamard-S matrix coding could provide comparable SNR improvement with Hadamard-S
Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. The data-driven methods based on deep neural networks have resulted in promising improvements, com