ترغب بنشر مسار تعليمي؟ اضغط هنا

Creating and Controlling Complex Light

61   0   0.0 ( 0 )
 نشر من قبل Nicholas Bender Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Random light fields -- commonly known as speckles -- demonstrate Rayleigh intensity statistics and only possess local correlations: which occur within the individual speckle grains. In this work, we develop an experimental method for customizing the intensity probability density function (PDF) of speckle patterns while simultaneously introducing non-local spatial correlations among the speckle grains. The various families of tailored speckle patterns -- created by our method -- can exhibit radically different topologies, statistics, and variable degrees of spatial order. Irrespective of their distinct statistical properties, however, all of these speckles are created by appropriately encoding high-order correlations into the phase front of a monochromatic laser beam with a spatial light modulator. In addition to our experimental demonstration, we explore both the theoretical and practical limitations on the extent to which the intensity PDF and the spatial intensity correlations can be manipulated concurrently in a speckle pattern. This work provides a versatile methodology for creating complex light fields and controlling their statistical properties with varied applications in microscopy, imaging, and optical manipulation.



قيم البحث

اقرأ أيضاً

In this paper we show that it is possible to structure the longitudinal polarization component of light. We illustrate our approach by demonstrating linked and knotted longitudinal vortex lines acquired upon non-paraxially propagating a tightly focus ed sub-wavelength beam. Remaining degrees of freedom in the transverse polarization components can be exploited to generate customized topological vector beams.
Metasurface, a kind of two-dimensional structured medium, represents a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar metalens, metasurface optical hologr aphy and so on have been widely investigated. Recently, metasurfaces go into nonlinear optical regime. While it is recognized that the local symmetry of the meta-atoms plays vital roles, its relationship with global symmetry of the nonlinear metasurfaces remains elusive. According to the Penrose tiling and the newly proposed hexagonal quasicrystalline tiling, here we designed and fabricated the nonlinear optical quasicrystal metasurfaces based on the geometric phase controlled plasmonic meta-atoms with local rotational symmetry. The second harmonic waves will be determined by both the tiling schemes of quasicrystal metasurfaces and the local symmetry of meta-atoms they consist of. The proposed concept opens new routes for designing nonlinear metasurface crystals with desired optical functionalities.
The optical spin Hall effect (OSHE) is a transport phenomenon of exciton polaritons in semiconductor microcavities, caused by the polaritonic spin-orbit interaction, that leads to the formation of spin textures. In the semiconductor cavity, the physi cal basis of the spin orbit coupling is an effective magnetic field caused by the splitting of transverse-electric and transverse-magnetic (TE-TM) modes. The spin textures can be observed in the near field (local spin distribution of polaritons), and as light polarization patterns in the more readily observable far field. For future applications in spinoptronic devices, a simple and robust control mechanism, which establishes a one-to-one correspondence between stationary incident light intensity and far-field polarization pattern, is needed. We present such a control scheme, which is made possible by a specific double-microcavity design.
As they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature, Weyl nodes have been predict ed to strongly affect the transverse electronic response, like in the anomalous Hall or Nernst effects. However, to observe large anomalous effects the Weyl nodes need to be close to or at the Fermi-level, which implies the band structure must be tuned by an external parameter, e.g. chemical doping or pressure. Here we show that in a ferromagnetic metal tuning of the Weyl node energy and momentum can be achieved by rotation of the magnetization. Taking Co$_3$Sn$_2$S$_2$ as an example, we use electronic structure calculations based on density-functional theory to show that not only new Weyl fermions can be created by canting the magnetization away from the easy axis, but also that the Weyl nodes can be driven exactly to the Fermi surface. We also show that the dynamics in energy and momentum of the Weyl nodes strongly affect the calculated anomalous Hall and Nernst conductivities.
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this r eview we highlight work on the interaction of vector light fields with atoms, and matter in general. This vibrant research area explores the full potential of light, with clear benefits for classical as well as quantum applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا