ﻻ يوجد ملخص باللغة العربية
Random light fields -- commonly known as speckles -- demonstrate Rayleigh intensity statistics and only possess local correlations: which occur within the individual speckle grains. In this work, we develop an experimental method for customizing the intensity probability density function (PDF) of speckle patterns while simultaneously introducing non-local spatial correlations among the speckle grains. The various families of tailored speckle patterns -- created by our method -- can exhibit radically different topologies, statistics, and variable degrees of spatial order. Irrespective of their distinct statistical properties, however, all of these speckles are created by appropriately encoding high-order correlations into the phase front of a monochromatic laser beam with a spatial light modulator. In addition to our experimental demonstration, we explore both the theoretical and practical limitations on the extent to which the intensity PDF and the spatial intensity correlations can be manipulated concurrently in a speckle pattern. This work provides a versatile methodology for creating complex light fields and controlling their statistical properties with varied applications in microscopy, imaging, and optical manipulation.
In this paper we show that it is possible to structure the longitudinal polarization component of light. We illustrate our approach by demonstrating linked and knotted longitudinal vortex lines acquired upon non-paraxially propagating a tightly focus
Metasurface, a kind of two-dimensional structured medium, represents a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar metalens, metasurface optical hologr
The optical spin Hall effect (OSHE) is a transport phenomenon of exciton polaritons in semiconductor microcavities, caused by the polaritonic spin-orbit interaction, that leads to the formation of spin textures. In the semiconductor cavity, the physi
As they do not rely on the presence of any crystal symmetry, Weyl nodes are robust topological features of an electronic structure that can occur at any momentum and energy. Acting as sinks and sources of Berry curvature, Weyl nodes have been predict
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this r