ﻻ يوجد ملخص باللغة العربية
Information flow analysis prevents secret or untrusted data from flowing into public or trusted sinks. Existing mechanisms cover a wide array of options, ranging from lightweight taint analysis to heavyweight information flow control that also considers implicit flows. Dynamic analysis, which is particularly popular for languages such as JavaScript, faces the question whether to invest in analyzing flows caused by not executing a particular branch, so-called hidden implicit flows. This paper addresses the questions how common different kinds of flows are in real-world programs, how important these flows are to enforce security policies, and how costly it is to consider these flows. We address these questions in an empirical study that analyzes 56 real-world JavaScript programs that suffer from various security problems, such as code injection vulnerabilities, denial of service vulnerabilities, memory leaks, and privacy leaks. The study is based on a state-of-the-art dynamic information flow analysis and a formalization of its core. We find that implicit flows are expensive to track in terms of permissiveness, label creep, and runtime overhead. We find a lightweight taint analysis to be sufficient for most of the studied security problems, while for some privacy-related code, observable tracking is sometimes required. In contrast, we do not find any evidence that tracking hidden implicit flows reveals otherwise missed security problems. Our results help security analysts and analysis designers to understand the cost-benefit tradeoffs of information flow analysis and provide empirical evidence that analyzing implicit flows in a cost-effective way is a relevant problem.
In the proof-of-stake (PoS) paradigm for maintaining decentralized, permissionless cryptocurrencies, Sybil attacks are prevented by basing the distribution of roles in the protocol execution on the stake distribution recorded in the ledger itself. Ho
802.11 device fingerprinting is the action of characterizing a target device through its wireless traffic. This results in a signature that may be used for identification, network monitoring or intrusion detection. The fingerprinting method can be ac
The prominence and use of the concept of cyber risk has been rising in recent years. This paper presents empirical investigations focused on two important and distinct groups within the broad community of cyber-defense professionals and researchers:
Federated learning enables mutually distrusting participants to collaboratively learn a distributed machine learning model without revealing anything but the models output. Generic federated learning has been studied extensively, and several learning
Empirical observations and theoretical studies indicate that the overall travel-time of vehicles in a traffic network can be optimized by means of ramp metering control systems. Here, we present an analysis of traffic data of the highway network of N