ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Study of Information Flows in Real-World JavaScript

62   0   0.0 ( 0 )
 نشر من قبل Cristian-Alexandru Staicu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Information flow analysis prevents secret or untrusted data from flowing into public or trusted sinks. Existing mechanisms cover a wide array of options, ranging from lightweight taint analysis to heavyweight information flow control that also considers implicit flows. Dynamic analysis, which is particularly popular for languages such as JavaScript, faces the question whether to invest in analyzing flows caused by not executing a particular branch, so-called hidden implicit flows. This paper addresses the questions how common different kinds of flows are in real-world programs, how important these flows are to enforce security policies, and how costly it is to consider these flows. We address these questions in an empirical study that analyzes 56 real-world JavaScript programs that suffer from various security problems, such as code injection vulnerabilities, denial of service vulnerabilities, memory leaks, and privacy leaks. The study is based on a state-of-the-art dynamic information flow analysis and a formalization of its core. We find that implicit flows are expensive to track in terms of permissiveness, label creep, and runtime overhead. We find a lightweight taint analysis to be sufficient for most of the studied security problems, while for some privacy-related code, observable tracking is sometimes required. In contrast, we do not find any evidence that tracking hidden implicit flows reveals otherwise missed security problems. Our results help security analysts and analysis designers to understand the cost-benefit tradeoffs of information flow analysis and provide empirical evidence that analyzing implicit flows in a cost-effective way is a relevant problem.



قيم البحث

اقرأ أيضاً

87 - Rainer Stutz 2020
In the proof-of-stake (PoS) paradigm for maintaining decentralized, permissionless cryptocurrencies, Sybil attacks are prevented by basing the distribution of roles in the protocol execution on the stake distribution recorded in the ledger itself. Ho wever, for various reasons this distribution cannot be completely up-to-date, introducing a gap between the present stake distribution, which determines the parties current incentives, and the one used by the protocol. In this paper, we investigate this issue, and empirically quantify its effects. We survey existing provably secure PoS proposals to observe that the above time gap between the two stake distributions, which we call stake distribution lag, amounts to several days for each of these protocols. Based on this, we investigate the ledgers of four major cryptocurrencies (Bitcoin, Bitcoin Cash, Litecoin and Zcash) and compute the average stake shift (the statistical distance of the two distributions) for each value of stake distribution lag between 1 and 14 days, as well as related statistics. We also empirically quantify the sublinear growth of stake shift with the length of the considered lag interval. Finally, we turn our attention to unusual stake-shift spikes in these currencies: we observe that hard forks trigger major stake shifts and that single real-world actors, mostly exchanges, account for major stake shifts in established cryptocurrency ecosystems.
802.11 device fingerprinting is the action of characterizing a target device through its wireless traffic. This results in a signature that may be used for identification, network monitoring or intrusion detection. The fingerprinting method can be ac tive by sending traffic to the target device, or passive by just observing the traffic sent by the target device. Many passive fingerprinting methods rely on the observation of one particular network feature, such as the rate switching behavior or the transmission pattern of probe requests. In this work, we evaluate a set of global wireless network parameters with respect to their ability to identify 802.11 devices. We restrict ourselves to parameters that can be observed passively using a standard wireless card. We evaluate these parameters for two different tests: i) the identification test that returns one single result being the closest match for the target device, and ii) the similarity test that returns a set of devices that are close to the target devices. We find that the network parameters transmission time and frame inter-arrival time perform best in comparison to the other network parameters considered. Finally, we focus on inter-arrival times, the most promising parameter for device identification, and show its dependency from several device characteristics such as the wireless card and driver but also running applications.
The prominence and use of the concept of cyber risk has been rising in recent years. This paper presents empirical investigations focused on two important and distinct groups within the broad community of cyber-defense professionals and researchers: (1) cyber practitioners and (2) developers of cyber ontologies. The key finding of this work is that the ways the concept of cyber risk is treated by practitioners of cybersecurity is largely inconsistent with definitions of cyber risk commonly offered in the literature. Contrary to commonly cited definitions of cyber risk, concepts such as the likelihood of an event and the extent of its impact are not used by cybersecurity practitioners. This is also the case for use of these concepts in the current generation of cybersecurity ontologies. Instead, terms and concepts reflective of the adversarial nature of cyber defense appear to take the most prominent roles. This research offers the first quantitative empirical evidence that rejection of traditional concepts of cyber risk by cybersecurity professionals is indeed observed in real-world practice.
Federated learning enables mutually distrusting participants to collaboratively learn a distributed machine learning model without revealing anything but the models output. Generic federated learning has been studied extensively, and several learning protocols, as well as open-source frameworks, have been developed. Yet, their over pursuit of computing efficiency and fast implementation might diminish the security and privacy guarantees of participants training data, about which little is known thus far. In this paper, we consider an honest-but-curious adversary who participants in training a distributed ML model, does not deviate from the defined learning protocol, but attempts to infer private training data from the legitimately received information. In this setting, we design and implement two practical attacks, reverse sum attack and reverse multiplication attack, neither of which will affect the accuracy of the learned model. By empirically studying the privacy leakage of two learning protocols, we show that our attacks are (1) effective - the adversary successfully steal the private training data, even when the intermediate outputs are encrypted to protect data privacy; (2) evasive - the adversarys malicious behavior does not deviate from the protocol specification and deteriorate any accuracy of the target model; and (3) easy - the adversary needs little prior knowledge about the data distribution of the target participant. We also experimentally show that the leaked information is as effective as the raw training data through training an alternative classifier on the leaked information. We further discuss potential countermeasures and their challenges, which we hope may lead to several promising research directions.
Empirical observations and theoretical studies indicate that the overall travel-time of vehicles in a traffic network can be optimized by means of ramp metering control systems. Here, we present an analysis of traffic data of the highway network of N orth-Rhine-Westfalia in order to identify and characterize the sections of the network which limit the performance, i.e., the bottlenecks. It is clarified whether the bottlenecks are of topological nature or if they are constituted by on-ramps. This allows to judge possible optimization mechanisms and reveals in which areas of the network they have to be applied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا