ﻻ يوجد ملخص باللغة العربية
Gravitational wave echoes have been proposed as a smoking-gun signature of exotic compact objects with near-horizon structure. Recently there have been observational claims that echoes are indeed present in stretches of data from Advanced LIGO and Advanced Virgo immediately following gravitational wave signals from presumed binary black hole mergers, as well as a binary neutron star merger. In this paper we deploy a morphology-independent search algorithm for echoes introduced in Tsang et al., Phys. Rev. D 98, 024023 (2018), which (a) is able to accurately reconstruct a possible echoes signal with minimal assumptions about their morphology, and (b) computes Bayesian evidences for the hypotheses that the data contain a signal, an instrumental glitch, or just stationary, Gaussian noise. Here we apply this analysis method to all the significant events in the first Gravitational Wave Transient Catalog (GWTC-1), which comprises the signals from binary black hole and binary neutron star coalescences found during the first and second observing runs of Advanced LIGO and Advanced Virgo. In all cases, the ratios of evidences for signal versus noise and signal versus glitch do not rise above their respective background distributions obtained from detector noise, the smallest $p$-value being 3% (for event GW170823). Hence we find no statistically significant evidence for echoes in GWTC-1.
Advanced LIGO and Advanced Virgo are actively monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their firs
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and
The speed of gravitational waves for a single observation can be measured by the time delay among gravitational-wave detectors with Bayesian inference. Then multiple measurements can be combined to produce a more accurate result. From the near simult
Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approxim