ﻻ يوجد ملخص باللغة العربية
We propose a novel process where singly charged Higgs bosons are produced in a same-sign pair via vector boson fusion at hadron colliders in two Higgs doublet models. The process directly relates to the global symmetry structure of the Higgs potential. The produced charged Higgs bosons predominantly decay into a tau lepton and the neutrino or into a pair of top and bottom quarks, depending on the type of Yukawa interactions. We evaluate the signal and the background for the both cases at the CERN Large Hadron Collider and future higher-energy hadron colliders. We find that the process can be feasible and useful to explore the nature of the Higgs potential.
Higgs pair production is one of the primary goals of the LHC program. Investigating the effects beyond the Standard Model (BSM) is then of high interest. Two cases are presented to exemplify the impact of BSM physics on Higgs pair production and on t
Left-Right twin Higgs(LRTH) model predicts the existence of a pair of charged Higgs $phi^{pm}$. In this paper, we study the production of the charged Higgs bosons pair $phi^{pm}$ via the process $e^{+}e^{-}to phi^{+}phi^{-}$ at the International Line
We demonstrate that the LHC will be sensitive to quantum correlations between two quarks inside the proton. Same-sign W-boson pair production is the most promising channel for clear measurements of double parton scattering. The left-handed nature of
Higgs pair production provides a unique handle for measuring the strength of the Higgs self interaction and constraining the shape of the Higgs potential. Among the proposed future facilities, a circular 100 TeV proton-proton collider would provide t
Extending the Standard Model (SM) scalar sector via one or multiple Higgs field(s) in higher representation brings one or more charged Higgs bosons in the spectrum. Some of these gauge representations with appropriate hypercharge can bring up doubly