ترغب بنشر مسار تعليمي؟ اضغط هنا

Astronomical distance scales in the Gaia era

68   0   0.0 ( 0 )
 نشر من قبل Francois Mignard
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Mignard




اسأل ChatGPT حول البحث

Overview of the determination of astronomical distances from a metrological standpoint. Distances are considered from the Solar System (planetary distances) to extragalactic distances, with a special emphasis on the fundamental step of the trigonometric stellar distances and the giant leap recently experienced in this field thanks to the ESA space astrometry missions Hipparcos and Gaia.



قيم البحث

اقرأ أيضاً

110 - Angela Bragaglia 2017
Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the wealth of exquisite information we are expecting from the more advanced catalogues, but already offers good opportunities and indicates the vast potentialities. Gaia results can be efficiently complemented by ground-based data, in particular by large spectroscopic and photometric surveys. Examples of some scientific results of the Gaia-ESO survey are presented, as a teaser for what will be possible once advanced Gaia releases and ground-based data will be combined.
We present fits to the broadband photometric spectral energy distributions (SEDs) of 158 eclipsing binaries (EBs) in the Tycho-2 catalog. These EBs were selected because they have highly precise stellar radii, effective temperatures, and in many case s metallicities previously determined in the literature, and thus have bolometric luminosities that are typically good to $lesssim$ 10%. In most cases the available broadband photometry spans a wavelength range 0.4-10 $mu$m, and in many cases spans 0.15-22 $mu$m. The resulting SED fits, which have only extinction as a free parameter, provide a virtually model-independent measure of the bolometric flux at Earth. The SED fits are satisfactory for 156 of the EBs, for which we achieve typical precisions in the bolometric flux of $approx$ 3%. Combined with the accurately known bolometric luminosity, the result for each EB is a predicted parallax that is typically precise to $lesssim$ 5%. These predicted parallaxes---with typical uncertainties of 200 $mu$as---are 4-5 times more precise than those determined by Hipparcos for 99 of the EBs in our sample, with which we find excellent agreement. There is no evidence among this sample for significant systematics in the Hipparcos parallaxes of the sort that notoriously afflicted the Pleiades measurement. The EBs are distributed over the entire sky, span more than 10 mag in brightness, reach distances of more than 5 kpc, and in many cases our predicted parallaxes should also be more precise than those expected from the Gaia first data release. The EBs studied here can thus serve as empirical, independent benchmarks for these upcoming fundamental parallax measurements.
The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recen t data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia, and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets. We started our compilation from a query on all objects with a parallax larger than 100 mas using SIMBAD. We completed the census by adding companions, brown dwarfs with recent parallax measurements not in SIMBAD yet, and vetted exoplanets. The compilation combines astrometry and photometry from the recent Gaia Early Data Release 3 with literature magnitudes, spectral types and line-of-sight velocities. We give a description of the astrophysical content of the 10 pc sample. We find a multiplicity frequency of around 28%. Among the stars and brown dwarfs, we estimate that around 61% are M stars and more than half of the M stars are within the range M3.0 V to M5.0 V. We give an overview of the brown dwarfs and exoplanets that should be detected in the next Gaia data releases along with future developments. We provide a catalogue of 540 stars, brown dwarfs, and exoplanets in 339 systems, within 10 pc from the Sun. This list is as volume-complete as possible from current knowledge and provides benchmark stars that can be used, for instance, to define calibration samples and to test the quality of the forthcoming Gaia releases. It also has a strong outreach potential.
78 - P. B. Stetson 2019
We present wide-field, ground-based Johnson-Cousins UBVRI photometry for 48 Galactic globular clusters based on almost 90000 public and proprietary images. The photometry is calibrated with the latest transformations obtained in the framework of our secondary standard project, with typical internal and external uncertainties of order a few millimagnitudes. These data provide a bridge between existing small-area, high-precision HST photometry and all sky-catalogues from large surveys like Gaia, SDSS, or LSST. For many clusters, we present the first publicly available photometry in some of the five bands (typically U and R). We illustrate the scientific potential of the photometry with examples of surface density and brightness profiles and of colour-magnitude diagrams, with the following highlights: (i) we study the morphology of NGC 5904, finding a varying ellipticity and position angle as a function of radial distance; (ii) we show U-based colour-magnitude diagrams and demonstrate that no cluster in our sample is free from multiple stellar populations, with the possible exception of a few clusters with high and differential reddening or field contamination, for which more sophisticated investigations are required. This is true even for NGC 5694 and Terzan 8, that were previously considered as (mostly) single-population candidates.
The second Gaia data release (DR2, spring 2018) included a unique all-sky catalogue of large-amplitude long-period variables (LPVs) containing Miras and semi-regular variables. These stars are on the Asymptotic Giant Branch (AGB), and are characteriz ed by high luminosity, changing surface composition, and intense mass loss, that make them of paramount importance for stellar, galactic, and extra-galactic studies. An initial investigation of LPVs in the Large Magellanic Cloud (LMC) from the DR2 catalog of LPVs has revealed the possibility to disentangle O-rich and C-rich stars using a combination of optical Gaia and infrared 2MASS photometry. The so-called Gaia-2MASS diagram constructed to achieve this has further been shown to enable the identification of sub-groups of AGB stars among the O-rich and C-rich LPVs. Here, we extend this initial study of the Gaia-2MASS diagram to the Small Magellanic Cloud and the Galaxy, and use a variability amplitude proxy to identify LPVs from the full Gaia DR2 archive. We show that the remarkable properties found in the LMC also apply to these other stellar systems. Interesting features, moreover, emerge as a result of the different metallicities between the three stellar environments, which we highlight in this exploratory presentation of Gaias potential to study stellar populations harboring LPVs. Finally, we look ahead to the future, and highlight the power of the exploitation of Gaia RP spectra for the identification of carbon stars using solely Gaia data in forthcoming data releases, as revealed in an Image of the Week published by the Gaia consortium on the European Space Agencys web site. These proceedings include three animated images that can be used as outreach material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا