ترغب بنشر مسار تعليمي؟ اضغط هنا

On Statistical Properties of A Veracity Scoring Method for Spatial Data

389   0   0.0 ( 0 )
 نشر من قبل Arnab Chakraborty
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring veracity or reliability of noisy data is of utmost importance, especially in the scenarios where the information are gathered through automated systems. In a recent paper, Chakraborty et. al. (2019) have introduced a veracity scoring technique for geostatistical data. The authors have used a high-quality `reference data to measure the veracity of the varying-quality observations and incorporated the veracity scores in their analysis of mobile-sensor generated noisy weather data to generate efficient predictions of the ambient temperature process. In this paper, we consider the scenario when no reference data is available and hence, the veracity scores (referred as VS) are defined based on `local summaries of the observations. We develop a VS-based estimation method for parameters of a spatial regression model. Under a non-stationary noise structure and fairly general assumptions on the underlying spatial process, we show that the VS-based estimators of the regression parameters are consistent. Moreover, we establish the advantage of the VS-based estimators as compared to the ordinary least squares (OLS) estimator by analyzing their asymptotic mean squared errors. We illustrate the merits of the VS-based technique through simulations and apply the methodology to a real data set on mass percentages of ash in coal seams in Pennsylvania.



قيم البحث

اقرأ أيضاً

Monitoring several correlated quality characteristics of a process is common in modern manufacturing and service industries. Although a lot of attention has been paid to monitoring the multivariate process mean, not many control charts are available for monitoring the covariance matrix. This paper presents a comprehensive overview of the literature on control charts for monitoring the covariance matrix in a multivariate statistical process monitoring (MSPM) framework. It classifies the research that has previously appeared in the literature. We highlight the challenging areas for research and provide some directions for future research.
We propose a latent topic model with a Markovian transition for process data, which consist of time-stamped events recorded in a log file. Such data are becoming more widely available in computer-based educational assessment with complex problem solv ing items. The proposed model can be viewed as an extension of the hierarchical Bayesian topic model with a hidden Markov structure to accommodate the underlying evolution of an examinees latent state. Using topic transition probabilities along with response times enables us to capture examinees learning trajectories, making clustering/classification more efficient. A forward-backward variational expectation-maximization (FB-VEM) algorithm is developed to tackle the challenging computational problem. Useful theoretical properties are established under certain asymptotic regimes. The proposed method is applied to a complex problem solving item in 2012 Programme for International Student Assessment (PISA 2012).
Consider a two-by-two factorial experiment with more than 1 replicate. Suppose that we have uncertain prior information that the two-factor interaction is zero. We describe new simultaneous frequentist confidence intervals for the 4 population cell m eans, with simultaneous confidence coefficient 1-alpha, that utilize this prior information in the following sense. These simultaneous confidence intervals define a cube with expected volume that (a) is relatively small when the two-factor interaction is zero and (b) has maximum value that is not too large. Also, these intervals coincide with the standard simultaneous confidence intervals obtained by Tukeys method, with simultaneous confidence coefficient 1-alpha, when the data strongly contradict the prior information that the two-factor interaction is zero. We illustrate the application of these new simultaneous confidence intervals to a real data set.
252 - Weiping Ma , Yang Feng , Kani Chen 2013
Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A multi-step approach is developed that simultaneously estimates the parametric components and the nonparametric function. Under certain regularity conditions, it is shown that the resulting estimators is consistent and asymptotic normal for the parametric part and achieve the optimal rate of convergence for the nonparametric part when the bandwidth is suitably chosen. Simulation results are presented to demonstrate the effectiveness and finite-sample performance of the method. The method is also applied to a SELDI-TOF mass spectrometry data set from a study of liver cancer patients.
This is a comment to the paper A study of problems encountered in Granger causality analysis from a neuroscience perspective. We agree that interpretation issues of Granger Causality in Neuroscience exist (partially due to the historical unfortunate use of the name causality, as nicely described in previous literature). On the other hand we think that the paper uses a formulation of Granger causality which is outdated (albeit still used), and in doing so it dismisses the measure based on a suboptimal use of it. Furthermore, since data from simulated systems are used, the pitfalls that are found with the used formulation are intended to be general, and not limited to neuroscience. It would be a pity if this paper, even written in good faith, became a wildcard against all possible applications of Granger Causality, regardless of the hard work of colleagues aiming to seriously address the methodological and interpretation pitfalls. In order to provide a balanced view, we replicated their simulations used the updated State Space implementation, proposed already some years ago, in which the pitfalls are mitigated or directly solved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا