In this note, we show a sublinear nonergodic convergence rate for the algorithm developed in [Bai, et al. Generalized symmetric ADMM for separable convex optimization. Comput. Optim. Appl. 70, 129-170 (2018)], as well as its linear convergence under assumptions that the sub-differential of each component objective function is piecewise linear and all the constraint sets are polyhedra. These remaining convergence results are established for the stepsize parameters of dual variables belonging to a special isosceles triangle region, which aims to strengthen our understanding for convergence of the generalized symmetric ADMM.