ﻻ يوجد ملخص باللغة العربية
The fermionic Z-portal dark matter model suffers from severe constraints from direct detection experiments. However, a narrow parameter space around the Z-funnel region is beyond the reach due to the resonance annihilation. In this paper, we provide an intriguing collider prospect for probing the Z-funnel dark matter mass range at the future lepton colliders including the beam polarization feature. We have done a comprehensive analysis for mono-photon signal at the colliders for such a dark matter. A realistic estimation for the 90% C.L. constraints with the systematic beam uncertainties has also been provided.
The leptophilic weakly interacting massive particle (WIMP) is realized in a minimal renormalizable model scenario where scalar mediators with lepton number establish the WIMP interaction with the standard model (SM) leptons. We perform a comprehensiv
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibilit
We examine the possibility that dark matter (DM) consists of a gapped continuum, rather than ordinary particles. A Weakly-Interacting Continuum (WIC) model, coupled to the Standard Model via a Z-portal, provides an explicit realization of this idea.
We explore a novel possibility that dark matter has a light mass below 1GeV in a lepton portal dark matter model. There are Yukawa couplings involving dark matter, left-handed leptons and an extra scalar doublet in the model. In the light mass region
We argue that extensions of the SM with a warped extra dimension, together with a new $mathbb{Z}_2$-odd scalar singlet, provide a natural explanation not only for the hierarchy problem but also for the nature of fermion bulk masses and the observed d