ترغب بنشر مسار تعليمي؟ اضغط هنا

Single crystal growth and magnetoresistivity study of topological semimetal CoSi

287   0   0.0 ( 0 )
 نشر من قبل Gang Li Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report single crystal growth of CoSi, which has recently been recognized as a new type of topological semimetal hosting fourfold and sixfold degenerate nodes. The Shubnikov-de Haas quantum oscillation (QO) is observed on our crystals. There are two frequencies originating from almost isotropic bulk electron Fermi surfaces, in accordance with band structure calculations. The effective mass, scattering rate, and QO phase difference of the two frequencies are extracted and discussed.



قيم البحث

اقرأ أيضاً

We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The samples high car rier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures.
We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a fun ction of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasi-particles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasi-linear inter-band contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies the optical response is governed by transitions between a previously unobserved four-fold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.
Chiral fermions in solid state feature Fermi arc states, connecting the surface projections of the bulk chiral nodes. The surface Fermi arc is a signature of nontrivial bulk topology. Unconventional chiral fermions with an extensive Fermi arc travers ing the whole Brillouin zone have been theoretically proposed in CoSi. Here, we use scanning tunneling microscopy / spectroscopy to investigate quasiparticle interference at various terminations of a CoSi single crystal. The observed surface states exhibit chiral fermion-originated characteristics. These reside on (001) and (011) but not (111) surfaces with pi-rotation symmetry, spiral with energy, and disperse in a wide energy range from ~-200 to ~+400 mV. Owing to the high-energy and high-space resolution, a spin-orbit coupling-induced splitting of up to ~80 mV is identified. Our observations are corroborated by density functional theory and provide strong evidence that CoSi hosts the unconventional chiral fermions and the extensive Fermi arc states.
Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concen tration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. However, shrinkage and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.
87 - L. Zhao , Z. Hu , H. Guo 2021
We report on the synthesis and physical properties of cm-sized CoGeO$_3$ single crystals grown in a high pressure mirror furnace at pressures of 80~bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly ani sotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with T$_N$~$sim$~33.5~K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions which reveals the presence of sizable orbital moments in CoGeO$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا