ﻻ يوجد ملخص باللغة العربية
Hydrogen has been the essential element in the development of atomic and molecular physics1). Moving to the properties of dense hydrogen has appeared a good deal more complex than originally thought by Wigner and Hungtinton in their seminal paper predicting metal hydrogen2): the electrons and the protons are strongly coupled to each other and ultimately must be treated equally3)4). The determination of how and when molecular solid hydrogen will transform into a metal is the stepping stone towards a full understanding of the quantum-many body properties of dense hydrogen. The quest for metal hydrogen has pushed major developments of modern experimental high pressure physics, yet the various claims of its observation over the past 30 years have remained controversial5)6)7). Here we show a first order phase transition near 425 GPa from insulator molecular solid hydrogen to metal hydrogen. Pressure in excess of 400 GPa could be achieved by using the recently developed Toroidal Diamond Anvil Cell (T-DAC)8). The structural and electronic properties of dense solid hydrogen at 80 K have been characterized by synchrotron infrared spectroscopy. The continuous vibron frequency shift and the electronic band gap closure down to 0.5 eV, both linearly evolving with pressure, point to the stability of the insulator C2/c-24 phase up to the metallic transition. Upon pressure release, the metallic state transforms back to the C2/c-24 phase with almost no hysteresis, hence suggesting that the metallization proceeds through a structural transformation within the molecular solid, presumably to the Cmca-12 structure. Our results are in good agreement with the scenario recently disclosed by an advanced calculation able to capture many-body electronic correlations9).
Loubeyre, Occelli, and Dumas (LOD) [1] claim to have produced metallic hydrogen (MH) at a pressure of 425 GPa, without the necessary supporting evidence of an insulator to metal transition. The paper is much ado about nothing. Most of the results hav
The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T=0 K to very high temperatures. We have conducted measurements
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based tw
The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to
We have studied solid hydrogen under pressure at low temperatures. With increasing pressure we observe changes in the sample, going from transparent, to black, to a reflective metal, the latter studied at a pressure of 495 GPa. We have measured the r