ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimodal Logical Inference System for Visual-Textual Entailment

199   0   0.0 ( 0 )
 نشر من قبل Riko Suzuki
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A large amount of research about multimodal inference across text and vision has been recently developed to obtain visually grounded word and sentence representations. In this paper, we use logic-based representations as unified meaning representations for texts and images and present an unsupervised multimodal logical inference system that can effectively prove entailment relations between them. We show that by combining semantic parsing and theorem proving, the system can handle semantically complex sentences for visual-textual inference.



قيم البحث

اقرأ أيضاً

The recently proposed SNLI-VE corpus for recognising visual-textual entailment is a large, real-world dataset for fine-grained multimodal reasoning. However, the automatic way in which SNLI-VE has been assembled (via combining parts of two related da tasets) gives rise to a large number of errors in the labels of this corpus. In this paper, we first present a data collection effort to correct the class with the highest error rate in SNLI-VE. Secondly, we re-evaluate an existing model on the corrected corpus, which we call SNLI-VE-2.0, and provide a quantitative comparison with its performance on the non-corrected corpus. Thirdly, we introduce e-SNLI-VE, which appends human-written natural language explanations to SNLI-VE-2.0. Finally, we train models that learn from these explanations at training time, and output such explanations at testing time.
We introduce a collection of recognizing textual entailment (RTE) datasets focused on figurative language. We leverage five existing datasets annotated for a variety of figurative language -- simile, metaphor, and irony -- and frame them into over 12 ,500 RTE examples.We evaluate how well state-of-the-art models trained on popular RTE datasets capture different aspects of figurative language. Our results and analyses indicate that these models might not sufficiently capture figurative language, struggling to perform pragmatic inference and reasoning about world knowledge. Ultimately, our datasets provide a challenging testbed for evaluating RTE models.
In this paper, we present a new corpus of entailment problems. This corpus combines the following characteristics: 1. it is precise (does not leave out implicit hypotheses) 2. it is based on real-world texts (i.e. most of the premises were written fo r purposes other than testing textual entailment). 3. its size is 150. The corpus was constructed by taking problems from the Real Text Entailment and discovering missing hypotheses using a crowd of experts. We believe that this corpus constitutes a first step towards wide-coverage testing of precise natural-language inference systems.
Combining a pretrained language model (PLM) with textual patterns has been shown to help in both zero- and few-shot settings. For zero-shot performance, it makes sense to design patterns that closely resemble the text seen during self-supervised pret raining because the model has never seen anything else. Supervised training allows for more flexibility. If we allow for tokens outside the PLMs vocabulary, patterns can be adapted more flexibly to a PLMs idiosyncrasies. Contrasting patterns where a token can be any continuous vector vs. those where a discrete choice between vocabulary elements has to be made, we call our method CONtinuous pAtterNs (CONAN). We evaluate CONAN on two established benchmarks for lexical inference in context (LIiC) a.k.a. predicate entailment, a challenging natural language understanding task with relatively small training sets. In a direct comparison with discrete patterns, CONAN consistently leads to improved performance, setting a new state of the art. Our experiments give valuable insights into the kind of pattern that enhances a PLMs performance on LIiC and raise important questions regarding our understanding of PLMs using text patterns.
225 - Adam Poliak 2020
Recognizing Textual Entailment (RTE) was proposed as a unified evaluation framework to compare semantic understanding of different NLP systems. In this survey paper, we provide an overview of different approaches for evaluating and understanding the reasoning capabilities of NLP systems. We then focus our discussion on RTE by highlighting prominent RTE datasets as well as advances in RTE dataset that focus on specific linguistic phenomena that can be used to evaluate NLP systems on a fine-grained level. We conclude by arguing that when evaluating NLP systems, the community should utilize newly introduced RTE datasets that focus on specific linguistic phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا