ﻻ يوجد ملخص باللغة العربية
Recently, substantial progress has been made in language modeling by using deep neural networks. However, in practice, large scale neural language models have been shown to be prone to overfitting. In this paper, we present a simple yet highly effective adversarial training mechanism for regularizing neural language models. The idea is to introduce adversarial noise to the output embedding layer while training the models. We show that the optimal adversarial noise yields a simple closed-form solution, thus allowing us to develop a simple and time efficient algorithm. Theoretically, we show that our adversarial mechanism effectively encourages the diversity of the embedding vectors, helping to increase the robustness of models. Empirically, we show that our method improves on the single model state-of-the-art results for language modeling on Penn Treebank (PTB) and Wikitext-2, achieving test perplexity scores of 46.01 and 38.07, respectively. When applied to machine translation, our method improves over various transformer-based translation baselines in BLEU scores on the WMT14 English-German and IWSLT14 German-English tasks.
Transformer models have achieved state-of-the-art results across a diverse range of domains. However, concern over the cost of training the attention mechanism to learn complex dependencies between distant inputs continues to grow. In response, solut
Abbreviation disambiguation is important for automated clinical note processing due to the frequent use of abbreviations in clinical settings. Current models for automated abbreviation disambiguation are restricted by the scarcity and imbalance of la
Adversarial attack has recently become a tremendous threat to deep learning models. To improve the robustness of machine learning models, adversarial training, formulated as a minimax optimization problem, has been recognized as one of the most effec
Despite success on a wide range of problems related to vision, generative adversarial networks (GANs) often suffer from inferior performance due to unstable training, especially for text generation. To solve this issue, we propose a new variational G
Generative adversarial networks (GAN) have shown remarkable results in image generation tasks. High fidelity class-conditional GAN methods often rely on stabilization techniques by constraining the global Lipschitz continuity. Such regularization lea