ﻻ يوجد ملخص باللغة العربية
We introduce bi-fermion fishnet theories, a class of models describing integrable sectors of four-dimensional gauge theories with non-maximal supersymmetry. Bi-fermion theories are characterized by a single complex scalar field and two Weyl fermions interacting only via chiral Yukawa couplings. The latter generate oriented Feynman diagrams forming hexagonal lattices, whose fishnet structure signals an underlying integrability that we exploit to compute anomalous dimensions of BMN-vacuum operators. Furthermore, we investigate Lunin-Maldacena deformations of $mathcal{N}=2$ superconformal field theories with deformation parameter $gamma$ and prove that bi-fermion models emerge in the limit of large imaginary $gamma$ and vanishing t Hooft coupling $g$, with $g e^{-i gamma/2}$ fixed. Finally, we explicitly find non-trivial conformal fixed points and compute the scaling dimensions of operators for any $gamma$ and in presence of double-trace deformations.
We consider a family of $mathcal{N}=2$ superconformal field theories in four dimensions, defined as $mathbb{Z}_q$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, us
We discuss the effective Chern-Simons levels for 3d $mathcal{N}=2$ gauge theories and their relations to the relative angles between NS5-brane and NS5-brane. We find that turning on real masses for chiral multiplets leads to various equivalent brane
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super
We complete the program of 2012.15792 about perturbative approaches for $mathcal{N}=2$ superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of su