ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrable Fishnet from $gamma$-Deformed $mathcal{N}=2$ Quivers

64   0   0.0 ( 0 )
 نشر من قبل Michelangelo Preti
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce bi-fermion fishnet theories, a class of models describing integrable sectors of four-dimensional gauge theories with non-maximal supersymmetry. Bi-fermion theories are characterized by a single complex scalar field and two Weyl fermions interacting only via chiral Yukawa couplings. The latter generate oriented Feynman diagrams forming hexagonal lattices, whose fishnet structure signals an underlying integrability that we exploit to compute anomalous dimensions of BMN-vacuum operators. Furthermore, we investigate Lunin-Maldacena deformations of $mathcal{N}=2$ superconformal field theories with deformation parameter $gamma$ and prove that bi-fermion models emerge in the limit of large imaginary $gamma$ and vanishing t Hooft coupling $g$, with $g e^{-i gamma/2}$ fixed. Finally, we explicitly find non-trivial conformal fixed points and compute the scaling dimensions of operators for any $gamma$ and in presence of double-trace deformations.



قيم البحث

اقرأ أيضاً

We consider a family of $mathcal{N}=2$ superconformal field theories in four dimensions, defined as $mathbb{Z}_q$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, us ing both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $mathcal{N}=1$ superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of $N$, exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $mathcal{N}=4$ only at high orders in perturbation theory.
96 - Shi Cheng 2021
We discuss the effective Chern-Simons levels for 3d $mathcal{N}=2$ gauge theories and their relations to the relative angles between NS5-brane and NS5-brane. We find that turning on real masses for chiral multiplets leads to various equivalent brane webs that are related by flipping the sign of mass parameters. This flip can be interpreted as 3d mirror symmetry for abelian theories. Each of these webs has a corresponding mathematical quiver structure. We check the equivalence of vortex partition functions for these brane webs by implementing topological vertex method. In addition, we compute the vortex partition functions of nonabelian theories with gauge group $U(N)$ and find the associated quiver structures and brane webs. We find that on Higgs branch nonabelian brane webs are broken to abelian brane webs with gauge group $U(1)^{otimes N}$. We also discuss the Ooguri-Vafa invariants for nonabelian theories and the movement of flavor D5-branes that leads to equivalent brane webs.
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular , we show that: 1) The partition function for arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be computed in perturbation series, which converges uniformly for $|lambda_I|<pi^2$, where $lambda_I$ are the t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions can be explicitly computed to arbitrary orders. There is no universal effective coupling by which one can express them in terms of correlators of the $mathcal{N}=4$ theory. 4) One can define twisted and untwisted sector operators. At the perturbative orbifold point, when all the couplings are the same, the correlators of untwisted sector operators coincide with those of $mathcal{N}=4$ Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of a certain number of planar loops, determined by the conformal dimension of the operator.
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super symmetric monopole operators across the dual theories. There is a simple general rule that encodes the mapping of the monopoles upon dualising a single node. This rule dictates the mapping of all the monopoles which are not dressed by baryonic operators. We also study more general situations involving baryons and baryon-monopoles, focussing on three examples: $SU-Sp$, $SO-SO$ and $SO-Sp$ quivers.
We complete the program of 2012.15792 about perturbative approaches for $mathcal{N}=2$ superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of su persymmetric localization. We compute Wilson loop vacuum expectation values, correlators of multiple coincident Wilson loops and one-point functions of chiral operators in presence of them acting as superconformal defects. We extend this analysis to the most general case considering chiral operators and multiple Wilson loops scattered in all the possible ways among the vector multiplets of the quiver. Finally, we identify twisted and untwisted observables which probe the orbifold of $AdS_5times S^5$ with the aim of testing possible holographic perspectives of quiver theories in $mathcal{N}=2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا