ﻻ يوجد ملخص باللغة العربية
Charge doping in transition metal dichalcogenide is currently a subject of high importance for future electronic and optoelectronic applications. Here we demonstrate chemical doping in CVD grown monolayer (1L) of WS2 by a few commonly used laboratory solvents by investigating the room temperature photoluminescence (PL). The appearance of distinct trionic emission in the PL spectra and quenched PL intensities suggest n-type doping in WS2. The temperature-dependent PL spectra of the doped 1L-WS2 reveal significant enhancement of trion emission intensity over the excitonic emission at low temperature indicating the stability of trion at low temperature. The temperature dependent exciton-trion population dynamic has been modeled using the law of mass action of trion formation. These results shed light on the solution-based chemical doping in 1L WS2 and its profound effect on the photoluminescence which is essential for the control of optical and electrical properties for optoelectronics applications.
Monolayer transition metal dichalcogenides (TMDs) are direct gap semiconductors emerging promising applications in diverse optoelectronic devices. To improve performance, recent investigations have been systematically focused on the tuning of their o
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmissio
We report a rare atom-like interaction between excitons in monolayer WS2, measured using ultrafast absorption spectroscopy. At increasing excitation density, the exciton resonance energy exhibits a pronounced redshift followed by an anomalous blueshi
Moire superlattices in van der Waals heterostructures have emerged as a powerful tool for engineering novel quantum phenomena. Here we report the observation of a correlated interlayer exciton insulator in a double-layer heterostructure composed of a