ﻻ يوجد ملخص باللغة العربية
We perform a semi-automated search for strong gravitational lensing systems in the 9,000 deg$^2$ Dark Energy Camera Legacy Survey (DECaLS), part of the DESI Legacy Imaging Surveys (Dey et al.). The combination of the depth and breadth of these surveys are unparalleled at this time, making them particularly suitable for discovering new strong gravitational lensing systems. We adopt the deep residual neural network architecture (He et al.) developed by Lanusse et al. for the purpose of finding strong lenses in photometric surveys. We compile a training set that consists of known lensing systems in the Legacy Surveys and DES as well as non-lenses in the footprint of DECaLS. In this paper we show the results of applying our trained neural network to the cutout images centered on galaxies typed as ellipticals (Lang et al.) in DECaLS. The images that receive the highest scores (probabilities) are visually inspected and ranked. Here we present 335 candidate strong lensing systems, identified for the first time.
We have conducted a search for new strong gravitational lensing systems in the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys Data Release 8. We use deep residual neural networks, building on previous work presented in Huang et al. (2020
The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyze sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectabl
Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies fro
Large scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately-sampled fields. Using a group finding algorithm, we find 210 groups with at least five member