ﻻ يوجد ملخص باللغة العربية
We construct a solvable deformation of two-dimensional theories with $(2,2)$ supersymmetry using an irrelevant operator which is a bilinear in the supercurrents. This supercurrent-squared operator is manifestly supersymmetric, and equivalent to $Tbar{T}$ after using conservation laws. As illustrative examples, we deform theories involving a single $(2,2)$ chiral superfield. We show that the deformed free theory is on-shell equivalent to the $(2,2)$ Nambu-Goto action. At the classical level, models with a superpotential exhibit more surprising behavior: the deformed theory exhibits poles in the physical potential which modify the vacuum structure. This suggests that irrelevant deformations of $Toverline{T}$ type might also affect infrared physics.
We investigate the $Tbar{T}$ deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the $Tbar{T}$ deforming operator can be constructed
It was recently shown that the theory obtained by deforming a general two dimensional conformal theory by the irrelevant operator $Tbar T$ is solvable. In the context of holography, a large class of such theories can be obtained by studying string th
We investigate the $Tbar{T}$-like flows for non-linear electrodynamic theories in $D(=!!2n)$-dimensional spacetime. Our analysis is restricted to the deformation problem of the classical free action by employing the proposed $Tbar{T}$ operator from a
The $Tbar T$ deformation of a conformal field theory has a dual description as a cutoff $AdS_3$ spacetime, at least at the level of pure 3d gravity. We generalize this deformation in such a way that it builds up a patch of bulk $dS_3$ spacetime inste
We consider a gravitational perturbation of the Jackiw-Teitelboim (JT) gravity with an arbitrary dilaton potential and study the condition under which the quadratic action can be seen as a $Tbar{T}$-deformation of the matter action. As a special case