ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the friction of atomically thin layered materials

170   0   0.0 ( 0 )
 نشر من قبل Astrid S. de Wijn
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Friction is a ubiquitous phenomenon that greatly affects our everyday lives and is responsible for large amounts of energy loss in industrialised societies. Layered materials such as graphene have interesting frictional properties and are often used as (additives to) lubricants to reduce friction and protect against wear. Experimental Atomic Force Microscopy studies and detailed simulations have shown a number of intriguing effects such as friction strengthening and dependence of friction on the number of layers covering a surface. Here, we propose a simple, fundamental, model for friction on thin sheets. We use our model to explain a variety of seemingly contradictory experimental as well as numerical results. This model can serve as a basis for understanding friction on thin sheets, and opens up new possibilities for ultimately controlling their friction and wear protection.



قيم البحث

اقرأ أيضاً

The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical towards reducing the operating current, voltage and energy consumption in filamentary type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on-state current and the switching voltage. Here, we study the formation of conductive filaments in a material medium with sub-nanometer thickness, formed through the oxidation of atomically-thin two-dimensional boron nitride. The resulting memristive device exhibits sub-nanometer filamentary switching with sub-pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, we observe current switching characteristics that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. These ultra-low energy devices are promising for realizing femtojoule and sub-femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultra-low power operation.
69 - S. Veronesi , T. Papa , Y. Murata 2019
There is a great interest in the scientific community to perform calorimetry on samples having mass in the nanogram range. A detailed knowledge of the energy (heat) exchange in the fast growing family of micro- and nano-systems could provide valuable information about the chemistry and physics at the nano-scale. The possibility to have an atomically flat thermal probe represents an added value, because it provides the unique opportunity to perform Scanning Probe Microscopy (SPM) together with calorimetry. Here we report the fabrication, characterization, and calibration of atomically flat, single-crystalline gold film thermometers on mica substrate. Gold re-crystallization has been obtained, and successively the thermometer surface has been studied by Low Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM). The thermometer calibration demonstrates a heat exchange coefficient of 2.1 x 10^(-7) W/K and a performance about 10 times better than previous sensors based on Si substrates. The experimental setup allows the simultaneous investigation of heat exchange and surface physics on the same sample.
We fabricate van der Waals heterostructure devices using few unit cell thick Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ for magnetotransport measurements. The superconducting transition temperature and carrier density in atomically thin samples can be maintai ned to close to that of the bulk samples. As in the bulk sample, the sign of the Hall conductivity is found to be opposite to the normal state near the transition temperature but with a drastic enlargement of the region of Hall sign reversal in the temperature-magnetic field phase diagram as the thickness of samples decreases. Quantitative analysis of the Hall sign reversal based on the excess charge density in the vortex core and superconducting fluctuations suggests a renormalized superconducting gap in atomically thin samples at the 2-dimensional limit.
We study the thermal effects on the frictional properties of atomically thin sheets. We simulate a simple model based on the Prandtl-Tomlinson model that reproduces the layer dependence of friction and strengthening effects seen in AFM experiments. W e investigate sliding at constant speed as well as reversing direction. We also investigate contact aging: the changes that occur to the contact when the sliding stops completely. We compare the numerical results to analytical calculations based on Kramers rates. We find that there is a slower than exponential contact aging that weakens the contact and that we expect will be observable in experiments. We discuss the implications for sliding as well as aging experiments.
The coherent manipulation of acoustic waves on the nanoscale usually requires multilayers with thicknesses and interface roughness defined down to the atomic monolayer. This results in expensive devices with predetermined functionality. Nanoscale mes oporous materials present high surface-to-volume ratio and tailorable mesopores, which allow the incorporation of chemical functionalization to nanoacoustics. However, the presence of pores with sizes comparable to the acoustic wavelength is intuitively perceived as a major roadblock in nanoacoustics. Here we present multilayered nanoacoustic resonators based on mesoporous SiO$_2$ thin-films showing acoustic resonances in the 5-100 GHz range. We characterize the acoustic response of the system using coherent phonon generation experiments. Despite resonance wavelengths comparable to the pore size, we observe for the first time unexpectedly well-defined acoustic resonances with Q-factors around 10. Our results open the path to a promising platform for nanoacoustic sensing and reconfigurable acoustic nanodevices based on soft, inexpensive fabrication methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا