ترغب بنشر مسار تعليمي؟ اضغط هنا

New Algorithms for Functional Distributed Constraint Optimization Problems

374   0   0.0 ( 0 )
 نشر من قبل Khoi Hoang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model multi-agent coordination problems that are distributed by nature. The formulation is suitable for problems where variables are discrete and constraint utilities are represented in tabular form. However, many real-world applications have variables that are continuous and tabular forms thus cannot accurately represent constraint utilities. To overcome this limitation, researchers have proposed the Functional DCOP (F-DCOP) model, which are DCOPs with continuous variables. But existing approaches usually come with some restrictions on the form of constraint utilities and are without quality guarantees. Therefore, in this paper, we (i) propose exact algorithms to solve a specific subclass of F-DCOPs; (ii) propose approximation methods with quality guarantees to solve general F-DCOPs; and (iii) empirically show that our algorithms outperform existing state-of-the-art F-DCOP algorithms on randomly generated instances when given the same communication limitations.



قيم البحث

اقرأ أيضاً

Distributed Constraint Optimization Problems (DCOPs) are a widely studied framework for coordinating interactions in cooperative multi-agent systems. In classical DCOPs, variables owned by agents are assumed to be discrete. However, in many applicati ons, such as target tracking or sleep scheduling in sensor networks, continuous-valued variables are more suitable than discrete ones. To better model such applications, researchers have proposed Continuous DCOPs (C-DCOPs), an extension of DCOPs, that can explicitly model problems with continuous variables. The state-of-the-art approaches for solving C-DCOPs experience either onerous memory or computation overhead and unsuitable for non-differentiable optimization problems. To address this issue, we propose a new C-DCOP algorithm, namely Particle Swarm Optimization Based C-DCOP (PCD), which is inspired by Particle Swarm Optimization (PSO), a well-known centralized population-based approach for solving continuous optimization problems. In recent years, population-based algorithms have gained significant attention in classical DCOPs due to their ability in producing high-quality solutions. Nonetheless, to the best of our knowledge, this class of algorithms has not been utilized to solve C-DCOPs and there has been no work evaluating the potential of PSO in solving classical DCOPs or C-DCOPs. In light of this observation, we adapted PSO, a centralized algorithm, to solve C-DCOPs in a decentralized manner. The resulting PCD algorithm not only produces good-quality solutions but also finds solutions without any requirement for derivative calculations. Moreover, we design a crossover operator that can be used by PCD to further improve the quality of solutions found. Finally, we theoretically prove that PCD is an anytime algorithm and empirically evaluate PCD against the state-of-the-art C-DCOP algorithms in a wide variety of benchmarks.
Distributed Constraint Optimization Problems (DCOPs) are a widely studied class of optimization problems in which interaction between a set of cooperative agents are modeled as a set of constraints. DCOPs are NP-hard and significant effort has been d evoted to developing methods for finding incomplete solutions. In this paper, we study an emerging class of such incomplete algorithms that are broadly termed as population-based algorithms. The main characteristic of these algorithms is that they maintain a population of candidate solutions of a given problem and use this population to cover a large area of the search space and to avoid local-optima. In recent years, this class of algorithms has gained significant attention due to their ability to produce high-quality incomplete solutions. With the primary goal of further improving the quality of solutions compared to the state-of-the-art incomplete DCOP algorithms, we present two new population-based algorithms in this paper. Our first approach, Anytime Evolutionary DCOP or AED, exploits evolutionary optimization meta-heuristics to solve DCOPs. We also present a novel anytime update mechanism that gives AED its anytime property. While in our second contribution, we show that population-based approaches can be combined with local search approaches. Specifically, we develop an algorithm called DPSA based on the Simulated Annealing meta-heuristic. We empirically evaluate these two algorithms to illustrate their respective effectiveness in different settings against the state-of-the-art incomplete DCOP algorithms including all existing population-based algorithms in a wide variety of benchmarks. Our evaluation shows AED and DPSA markedly outperform the state-of-the-art and produce up to 75% improved solutions.
Tree projections provide a unifying framework to deal with most structural decomposition methods of constraint satisfaction problems (CSPs). Within this framework, a CSP instance is decomposed into a number of sub-problems, called views, whose soluti ons are either already available or can be computed efficiently. The goal is to arrange portions of these views in a tree-like structure, called tree projection, which determines an efficiently solvable CSP instance equivalent to the original one. Deciding whether a tree projection exists is NP-hard. Solution methods have therefore been proposed in the literature that do not require a tree projection to be given, and that either correctly decide whether the given CSP instance is satisfiable, or return that a tree projection actually does not exist. These approaches had not been generalized so far on CSP extensions for optimization problems, where the goal is to compute a solution of maximum value/minimum cost. The paper fills the gap, by exhibiting a fixed-parameter polynomial-time algorithm that either disproves the existence of tree projections or computes an optimal solution, with the parameter being the size of the expression of the objective function to be optimized over all possible solutions (and not the size of the whole constraint formula, used in related works). Tractability results are also established for the problem of returning the best K solutions. Finally, parallel algorithms for such optimization problems are proposed and analyzed. Given that the classes of acyclic hypergraphs, hypergraphs of bounded treewidth, and hypergraphs of bounded generalized hypertree width are all covered as special cases of the tree projection framework, the results in this paper directly apply to these classes. These classes are extensively considered in the CSP setting, as well as in conjunctive database query evaluation and optimization.
Distributed optimization algorithms are widely used in many industrial machine learning applications. However choosing the appropriate algorithm and cluster size is often difficult for users as the performance and convergence rate of optimization alg orithms vary with the size of the cluster. In this paper we make the case for an ML-optimizer that can select the appropriate algorithm and cluster size to use for a given problem. To do this we propose building two models: one that captures the system level characteristics of how computation, communication change as we increase cluster sizes and another that captures how convergence rates change with cluster sizes. We present preliminary results from our prototype implementation called Hemingway and discuss some of the challenges involved in developing such a system.
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning app lications. As a solution, we propose two distributed ZO algorithms, in which at each iteration each agent samples the local stochastic ZO oracle at two points with an adaptive smoothing parameter. We show that the proposed algorithms achieve the linear speedup convergence rate $mathcal{O}(sqrt{p/(nT)})$ for smooth cost functions and $mathcal{O}(p/(nT))$ convergence rate when the global cost function additionally satisfies the Polyak--Lojasiewicz (P--L) condition, where $p$ and $T$ are the dimension of the decision variable and the total number of iterations, respectively. To the best of our knowledge, this is the first linear speedup result for distributed ZO algorithms, which enables systematic processing performance improvements by adding more agents. We also show that the proposed algorithms converge linearly when considering deterministic centralized optimization problems under the P--L condition. We demonstrate through numerical experiments the efficiency of our algorithms on generating adversarial examples from deep neural networks in comparison with baseline and recently proposed centralized and distributed ZO algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا