ﻻ يوجد ملخص باللغة العربية
We study the problem of computing correlated strategies to commit to in games with multiple leaders and followers. To the best of our knowledge, this problem is widely unexplored so far, as the majority of the works in the literature focus on games with a single leader and one or more followers. The fundamental ingredient of our model is that a leader can decide whether to participate in the commitment or to defect from it by taking on the role of follower. This introduces a preliminary stage where, before the underlying game is played, the leaders make their decisions to reach an agreement on the correlated strategy to commit to. We distinguish three solution concepts on the basis of the constraints that they enforce on the agreement reached by the leaders. Then, we provide a comprehensive study of the properties of our solution concepts, in terms of existence, relation with other solution concepts, and computational complexity.
The search problem of computing a textit{leader-follower equilibrium} has been widely investigated in the scientific literature in, almost exclusively, the single-follower setting. Although the textit{optimistic} and textit{pessimisti
The concept of leader--follower (or Stackelberg) equilibrium plays a central role in a number of real--world applications of game theory. While the case with a single follower has been thoroughly investigated, results with multiple followers are only
Modern data stores achieve scalability by partitioning data into shards and fault-tolerance by replicating each shard across several servers. A key component of such systems is a Transaction Certification Service (TCS), which atomically commits a tra
We review some aspects, especially those we can tackle analytically, of a minimal model of closed economy analogous to the kinetic theory model of ideal gases where the agents exchange wealth amongst themselves such that the total wealth is conserved
In cases where both components of a binary system show oscillations, asteroseismology has been proposed as a method to identify the system. For KIC 2568888, observed with $Kepler$, we detect oscillation modes for two red giants in a single power dens