ترغب بنشر مسار تعليمي؟ اضغط هنا

Be a Leader or Become a Follower: The Strategy to Commit to with Multiple Leaders (Extended Version)

98   0   0.0 ( 0 )
 نشر من قبل Matteo Castiglioni
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of computing correlated strategies to commit to in games with multiple leaders and followers. To the best of our knowledge, this problem is widely unexplored so far, as the majority of the works in the literature focus on games with a single leader and one or more followers. The fundamental ingredient of our model is that a leader can decide whether to participate in the commitment or to defect from it by taking on the role of follower. This introduces a preliminary stage where, before the underlying game is played, the leaders make their decisions to reach an agreement on the correlated strategy to commit to. We distinguish three solution concepts on the basis of the constraints that they enforce on the agreement reached by the leaders. Then, we provide a comprehensive study of the properties of our solution concepts, in terms of existence, relation with other solution concepts, and computational complexity.



قيم البحث

اقرأ أيضاً

The search problem of computing a textit{leader-follower equilibrium} has been widely investigated in the scientific literature in, almost exclusively, the single-follower setting. Although the textit{optimistic} and textit{pessimisti
The concept of leader--follower (or Stackelberg) equilibrium plays a central role in a number of real--world applications of game theory. While the case with a single follower has been thoroughly investigated, results with multiple followers are only sporadic and the problem of designing and evaluating computationally tractable equilibrium-finding algorithms is still largely open. In this work, we focus on the fundamental case where multiple followers play a Nash equilibrium once the leader has committed to a strategy---as we illustrate, the corresponding equilibrium finding problem can be easily shown to be $mathcal{FNP}$--hard and not in Poly--$mathcal{APX}$ unless $mathcal{P} = mathcal{NP}$ and therefore it is one among the hardest problems to solve and approximate. We propose nonconvex mathematical programming formulations and global optimization methods to find both exact and approximate equilibria, as well as a heuristic black box algorithm. All the methods and formulations that we introduce are thoroughly evaluated computationally.
Modern data stores achieve scalability by partitioning data into shards and fault-tolerance by replicating each shard across several servers. A key component of such systems is a Transaction Certification Service (TCS), which atomically commits a tra nsaction spanning multiple shards. Existing TCS protocols require 2f+1 crash-stop replicas per shard to tolerate f failures. In this paper we present atomic commit protocols that require only f+1 replicas and reconfigure the system upon failures using an external reconfiguration service. We furthermore rigorously prove that these protocols correctly implement a recently proposed TCS specification. We present protocols in two different models--the standard asynchronous message-passing model and a model with Remote Direct Memory Access (RDMA), which allows a machine to access the memory of another machine over the network without involving the latters CPU. Our protocols are inspired by a recent FARM system for RDMA-based transaction processing. Our work codifies the core ideas of FARM as distributed TCS protocols, rigorously proves them correct and highlights the trade-offs required by the use of RDMA.
We review some aspects, especially those we can tackle analytically, of a minimal model of closed economy analogous to the kinetic theory model of ideal gases where the agents exchange wealth amongst themselves such that the total wealth is conserved , and each individual agent saves a fraction (0 < lambda < 1) of wealth before transaction. We are interested in the special case where the fraction lambda is constant for all the agents (global saving propensity) in the closed system. We show by moment calculations that the resulting wealth distribution cannot be the Gamma distribution that was conjectured in Phys. Rev. E 70, 016104 (2004). We also derive a form for the distribution at low wealth, which is a new result.
In cases where both components of a binary system show oscillations, asteroseismology has been proposed as a method to identify the system. For KIC 2568888, observed with $Kepler$, we detect oscillation modes for two red giants in a single power dens ity spectrum. Through an asteroseismic study we investigate if the stars have similar properties, which could be an indication that they are physically bound into a binary system. While one star lies on the red giant branch (RGB), the other, more evolved star, is either a RGB or asymptotic-giant-branch star. We found similar ages for the red giants and a mass ratio close to 1. Based on these asteroseismic results we propose KIC 2568888 as a rare candidate binary system ($sim 0.1%$ chance). However, when combining the asteroseismic data with ground-based $BVI$ photometry we estimated different distances for the stars, which we cross-checked with $Gaia$ DR2. From $Gaia$ we obtained for one object a distance between and broadly consistent with the distances from $BVI$ photometry. For the other object we have a negative parallax with a not yet reliable $Gaia$ distance solution. The derived distances challenge a binary interpretation and may either point to a triple system, which could explain the visible magnitudes, or, to a rare chance alignment ($sim 0.05%$ chance based on stellar magnitudes). This probability would even be smaller, if calculated for close pairs of stars with a mass ratio close to unity in addition to similar magnitudes, which may indeed indicate that a binary scenario is more favourable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا