ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme sensitivity and climate tipping points

124   0   0.0 ( 0 )
 نشر من قبل Peter Ashwin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A climate state close to a tipping point will have a degenerate linear response to perturbations, which can be associated with extreme values of the equilibrium climate sensitivity (ECS). In this paper we contrast linearized (`instantaneous) with fully nonlinear geometric (`two-point) notions of ECS, in both presence and absence of tipping points. For a stochastic energy balance model of the global mean surface temperature with two stable regimes, we confirm that tipping events cause the appearance of extremes in both notions of ECS. Moreover, multiple regimes with different mean sensitivities are visible in the two-point ECS. We confirm some of our findings in a physics-based multi-box model of the climate system.



قيم البحث

اقرأ أيضاً

Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurat ely inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e., 3-4{deg}C for 4 W/m2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapor elevates the tropopause. Burning all fossil fuels, we conclude, would make much of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.
Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their inte ractions in a conceptual and easily extendable framework: the Greenland and West Antarctic Ice Sheets, the Atlantic Meridional Overturning Circulation (AMOC), the El-Nino Southern Oscillation (ENSO) and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 {deg}C above pre-industrial climate conditions. For lower levels of warming, states including disintegrated ice sheets on West Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the Greenland Ice Sheet and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles.
One of the most used metrics to gauge the effects of climate change is the equilibrium climate sensitivity, defined as the long-term (equilibrium) temperature increase resulting from instantaneous doubling of atmospheric CO$_2$. Since global climate models cannot be fully equilibrated in practice, extrapolation techniques are used to estimate the equilibrium state from transient warming simulations. Because of the abundance of climate feedbacks - spanning a wide range of temporal scales - it is hard to extract long-term behaviour from short-time series; predominantly used techniques are only capable of detecting the single most dominant eigenmode, thus hampering their ability to give accurate long-term estimates. Here, we present an extension to those methods by incorporating data from multiple observables in a multi-component linear regression model. This way, not only the dominant but also the next-dominant eigenmodes of the climate system are captured, leading to better long-term estimates from short, non-equilibrated time series.
Palaeo data have been frequently used to determine the equilibrium (Charney) climate sensitivity $S^a$, and - if slow feedback processes (e.g. land ice-albedo) are adequately taken into account - they indicate a similar range as estimates based on in strumental data and climate model results. Most studies implicitly assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. Applying a new method to account for background state dependency, we find $S^a=0.61pm0.06$ K(Wm$^{-2}$)$^{-1}$ using the latest LGM temperature reconstruction and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, $S^a$ is estimated in the range $S^a=0.55-0.95$ K(Wm$^{-2}$)$^{-1}$.
This popular article provides a short summary of the progress and prospects in Weather and Climate Modelling for the benefit of high school and undergraduate college students and early career researchers. Although this is not a comprehensive scientif ic article, the basic information provided here is intended to introduce students and researchers to the topic of Weather and Climate Modelling - which comes under the broad discipline of Atmospheric / Oceanic / Climate / Earth Sciences. This article briefly summarizes the historical developments, progress, scientific challenges in weather and climate modelling and career opportunities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا