ﻻ يوجد ملخص باللغة العربية
GRB 190114C is an unusual gamma-ray burst (GRB) due to its detection at sub-$TeV$ energies by MAGIC, seen at redshift z = 0.42. This burst is one of the brightest GRB detected by fermi. A joint GBM-LAT analysis of the prompt emission reveals the presence of sub-$GeV$ spectral cutoff when the LAT emph{low-energy events} (LLE) data is also examined. A similar high-energy cutoff was likewise reported in GRB 160509A and GRB 100724B earlier, as well as handful of other sources. The cutoff can be explained by the intrinsic opacity due to pair production within the emitting region. GRB 190114C shows a transition from non-thermal to a quasi-thermal-like spectrum and a radiation component that can be attributed to afterglow. Based on spectral analysis, we constrain the site of the prompt emission and $Lorentz$ factor. Knowing that sub-$TeV$ photons are detected in MAGIC, we perceive that the observed spectrum is indeed an overlap from two emission sites, where the emission observed in fermi is more consistent with prompt emission produced via photospheric dissipation along with a concurrent component from the external shock.
GRB 190114C was a bright burst that occurred in the local Universe (z=0.425). It was the first gamma-ray burst (GRB) ever detected at TeV energies, thanks to MAGIC. We characterize the ambient medium properties of the host galaxy through the study of
GRB 131231A was detected by the Large Area Telescope onboard Fermi Space Gamma-ray Telescope. The high energy gamma-ray ($> 100$ MeV) afterglow emission spectrum is $F_ u propto u^{-0.54pm0.15}$ in the first $sim 1300$ s after the trigger and the mo
GRB 190114C is the first gamma-ray burst detected at Very High Energies (VHE, i.e. >300 GeV) by the MAGIC Cherenkov telescope. The analysis of the emission detected by the Fermi satellite at lower energies, in the 10 keV -- 100 GeV energy range, up t
Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. In this paper, we focus on the supernova re
Gamma-ray bursts (GRBs) of the long-duration class are the most luminous sources of electromagnetic radiation known in the Universe. They are generated by outflows of plasma ejected at near the speed of light by newly formed neutron stars or black ho