ﻻ يوجد ملخص باللغة العربية
Fully relativistic calculations have been performed for two multiplets, $3s3p^2;^4P$ and $3s3p4s;^4P^o$, in Al I. Wave functions were obtained for all levels of these multiplets using the GRASP programs. Reported are the E1 transitions rates for all transitions between levels of these multiplets. Transition energies and transition rates are compared with observed values and other theory. Our calculated transition rates are smaller by about 10% than observed rates, reducing a large discrepancy between earlier calculations and experiment.
High accuracy frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in calcium ions is performed using laser cooled and crystallized ions in a linear Paul trap. Calibration is performed with a frequency comb laser, resulting in a transition frequ
We measured the isotope shift in the $^2$S$_{1/2}$-$^2$P$_{3/2}$ (D2) transition in singly-ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to resolve the difference between the isotope shifts of th
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that
A semi-empirical method is used to characterize the 3s(2)3p(2)-3s3p(3) J=2 transition array in P II. In this method, Slater, spin-orbit, and radial parameters are fitted to experimental energy levels in order to obtain a description of the array in t
The static and dynamic electric-dipole polarizabilities of the $6s^2,^1S_0$ and $6s6p,^3P_1^o$ states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the $6s^2,^1S_0-6s6p,^3P_1^o$ transition, we