We study the magnetic fields in galaxy clusters through Faraday rotation measurements crossing systems in different dynamical states. We confirm that magnetic fields are present in those systems and analyze the difference between relaxed and unrelaxed samples with respect to the dispersion between their inherent Faraday Rotation measurements. We found an increase of this RM dispersion and a higher RM overlapping frequency for unrelaxed clusters. This fact suggests that a large scale physical process is involved in the nature of unrelaxed systems and possible depolarization effects are present in the relaxed ones. We show that dynamically unrelaxed systems can enhance magnetic fields to large coherence lengths. In contrast, the results for relaxed systems suggests that small-scale dynamo can be a dominant mechanism for sustaining magnetic fields, leading to intrinsic depolarization.