ﻻ يوجد ملخص باللغة العربية
We report protonation in several compounds by an ionic-liquid-gating method, with optimized gating conditions. This leads to single superconducting phases for several compounds. Non-volatility of protons allow post-gating magnetization and transport measurements. The superconducting transition temperature $T_C$ is enhanced to 43.5~K for FeSe$_{0.93}$S$_{0.07}$, and 41~K for FeSe after protonation. Superconductivity with $T_c$$approx$15~K for ZrNCl, $approx$7.2~K for 1$T$-TaS$_2$, and $approx$3.8~K for Bi$_2$Se$_3$ are induced after protonation. Electric transport in protonated FeSe$_{0.93}$S$_{0.07}$ confirms high-temperature superconductivity. Our $^{1}$H NMR measurements on protonated FeSe$_{1-x}$S$_{x}$ reveal enhanced spin-lattice relaxation rate $1/^{1}T_1$ with increasing $x$, which is consistent with LDA calculations that H$^{+}$ are located in the interstitial sites close to the anions.
Manipulating the superconducting states of high-T_c cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics. Traditional methods are mostly based on a trial-and-error metho
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M
Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by th
Superconductivity in FeTe0.8S0.2 is successfully induced by an electrochemical reaction using an ionic liquid solution. A clear correlation between the Fe concentration in the solution and the manifestation of superconductivity was confirmed, suggest
Layered transition-metal dichalcogenides 1T-TaS2-xSex (0<=x<=2) single crystals have been successfully fabricated by using a chemical vapor transport technique in which Ta locates in octahedral coordination with S and Se atoms. This is the first supe