ﻻ يوجد ملخص باللغة العربية
Representation of defeasible information is of interest in description logics, as it is related to the need of accommodating exceptional instances in knowledge bases. In this direction, in our previous works we presented a datalog translation for reasoning on (contextualized) OWL RL knowledge bases with a notion of justified exceptions on defeasible axioms. While it covers a relevant fragment of OWL, the resulting reasoning process needs a complex encoding in order to capture reasoning on negative information. In this paper, we consider the case of knowledge bases in $textit{DL-Lite}_{cal R}$, i.e. the language underlying OWL QL. We provide a definition for $textit{DL-Lite}_{cal R}$ knowledge bases with defeasible axioms and study their properties. The limited form of $textit{DL-Lite}_{cal R}$ axioms allows us to formulate a simpler encoding into datalog (under answer set semantics) with direct rules for reasoning on negative information. The resulting materialization method gives rise to a complete reasoning procedure for instance checking in $textit{DL-Lite}_{cal R}$ with defeasible axioms.
Reasoning on defeasible knowledge is a topic of interest in the area of description logics, as it is related to the need of representing exceptional instances in knowledge bases. In this direction, in our previous works we presented a framework for r
Ontology-mediated query answering (OMQA) is a promising approach to data access and integration that has been actively studied in the knowledge representation and database communities for more than a decade. The vast majority of work on OMQA focuses
We apply a paraconsistent logic to reason about fractions.
In order to meet usability requirements, most logic-based applications provide explanation facilities for reasoning services. This holds also for Description Logics, where research has focused on the explanation of both TBox reasoning and, more recen
Knowledge bases (KBs) are not static entities: new information constantly appears and some of the previous knowledge becomes obsolete. In order to reflect this evolution of knowledge, KBs should be expanded with the new knowledge and contracted from